Category: Digital sobriety

Digital sobriety at Greenspector 

Reading Time: 6 minutes

As we talk more and more about digital sobriety, it’s important to come-back to this notion. Especially it’s a part of greenspector activity. 

Definition 

Digital sobriety is a global approach of digital, respectful of the earth and people. 

Since few years, this topic takes more and more extent. We see this notion almost everywhere but often limited in consideration of environmental impact. For many Eco-design has been the gateway into the digital sobriety. 

  • Eco-design and digital environment impact consideration 
  • Digital accessibility and inclusion 
  • Attention economy 
  • Respect for personal data and privacy protection  
  • Cybersecurity 
  • Ethics 
  • Low tech and fight against technological solutionism
Eco-design and digital environment impact consideration

Various aspects of digital sobriety 

Environmental impact consideration plays a crucial role in digital services. Beyond resources consumption related to their use (for example, energy needful to charge the battery), these services affect the user’s equipment: battery and components wear, memory and system surcharge… Those impacts motivate early change of latest and newer equipment. 

However, today, the manufacturing of those equipments represents the phase of digital services with the greatest impact on the environment. It suits to create websites, mobile applications, and other digital services with as low impact as possible.  

That’s why the repositories have been increasing. Examples include the GR491 of INRthe RGESN of DINUMthe 115 best practices or OPQUAST.   

Add to this the law REEN as well as tools for evaluating the impact of digital services 

Finally, we observe that the subject is gaining momentum and structuration. We can only delight even though there is a long way to go. 

The benefits for users and companies are considerable. Overall, this approach improves the user experience (and in particular performance) as well as reduces development, maintenance and hosting costs. Similarly, the adoption of eco-design leads to the development of expertise, an improvement in brand image and constitutes a factor of attractiveness for customers but also for future employees 

As a result, an eco-designed digital service will often have a smaller scope, which will facilitate its security, its compliance for accessibility and will tend to restrict the personal data collected.

personal data collected

Eco-design also tends to ignore mechanisms aimed at capturing attention (infinite scroll, autoplay of videos, excessive notifications, etc.). This also constitutes an ethical advance: the user is no longer just a consumer who must be retained by all possible means. We gain their trust and support by first providing them with quality service, tailored to their expectations. 

Finally, by placing the user at the center of considerations, digital sobriety tends to avoid technological solutionism. This will avoid (among other things) going to digital services when it does not seem necessary. Sometimes a good old SMS can replace a website or a mobile application: a low-tech solution can meet user needs just as well (sometimes even better). 

At a time when more and more services (including public ones) are becoming digital, the accessibility of digital services is a central subject, in a process of inclusion and access to services for all. Unfortunately, this important subject does not yet receive all the attention it needs, although many tools exist and are being developed. The standard (RGAA) is now in its fourth version and the legislative framework extends to public structures as well as companies whose turnover exceeds 250 million euros. It offers a concrete approach to WCAG: a complete panel of W3C recommendations for accessible web content. Verification tools are numerous, even if they are not sufficient to verify all the criteria. 

Yet, even today, 97.4% of the most used websites have at least one accessibility errorThe compliance with administrative procedures is also far from what one might expect. Accessibility nevertheless remains an essential subject for digital sobriety technology and contributes to ensuring the usability of digital services as well as their sustainability.   

Beyond the penalties incurred by companies in the event of non-compliance with obligations, the benefits of this approach are numerous : 

  • Ensure that everyone can access the services and information offered under good conditions. 
  • Reach as wide an audience as possible, in particular via the curb cut effect
  • Develop internal expertise (retention of employees and attractiveness for recruitment). 

The attention economy is a field relatively little known as such, although it is already deeply rooted in our daily lives. These are all the mechanisms (design, design, functional, and others) that make us addicted to our smartphones and certain apps. We are talking here about captological mechanisms (or deceptive patterns): infinite scroll, notifications, modals, autoplay, etc. Through these design choices, the time spent on our mobiles increases, and our attention span decreases. The stake around our attention is above all financial. All this is detailed in the book The Goldfish Civilization and structures such as Designers Ethiques have already taken up the subject

This problem is all the more fundamental since we find ourselves faced with tools designed to spend as much time as possible on them, even though their use has a non-negligible environmental impact (via the wear and tear of the terminals, their energy consumption but also by ultimately pushing consumerist behavior, in particular through massive exposure to advertisements). It should be noted that in addition to these harmful impacts on the environment and the individual, there are ethical considerations since this system often results in greater collection of personal data. 

Regarding personal data, the question is not new, but the implementation of the GDPR was an important turning point. The aim here is to regulate the capture and storage of personal data of European citizens but also by European companies. This complex subject is particularly linked to micro-targeting (targeted advertising based on data collected on the Internet user) and is all the more dizzying in that it involves companies buying and reselling personal data (data brokers, all against a background of surveillance and political issues as in the case of Cambridge Analytica). More recently, the subject of personal data has returned to discussions following the questioning of the use of Google Analytics and Google Fonts, particularly in France. Not to mention the leaks of personal data that occur very regularly.   

Cybersecurity is present everywhere, through security breaches and other incidents that we hear about regularly. Today, it would seem aberrant or even irresponsible to offer a digital service that is not secure. However, this area requires many skills as well as constant monitoring. Again, digital sobriety can reduce the attack surface of a digital service. In return, care must be taken to ensure that the protection of the user does not force him to update his applications and software too often, under penalty of tending towards software obsolescence. Likewise, open source makes it possible, via total transparency, to prevent the presence of vulnerabilities. 

Ethics is a complex but necessary subject in the digital field. It is often at the heart of discussions, especially on the vast subject of algorithms and machine learning, for example in the case of self-driving cars. In order to design a digital respectful of individuals, the question of ethics is inseparable. 

Finally, technological solutionism, largely theorized by Evgeny Morozov, warns that digital is not always an appropriate solution. This awareness is all the more essential when we seek to reduce the environmental impact of digital technology.

Digital sobriety as part of the Greenspector’s work.

At Greenspector, digital sobriety is at the heart of our business. Even if our primary concern remains the reduction of the environmental impacts of digital services, all this is accompanied by considerations related to digital sobriety technology. The inextricable links between the different aspects of this subject mean that it is essential to guarantee a global approach so as not to miss an area for improvement, or even to avoid providing a recommendation that would harm the users in one way or another (deterioration of accessibility, security risk, etc.). If the impact is not always directly measurable or the seemingly minimal gain from the point of view of sobriety, other axes such as accessibility, the absence of captological mechanisms, and respect for privacy will contribute to making a more resilient product. This is why (and this is just one example among many), we encourage our customers not to directly integrate content from third-party services such as Youtube, Twitter, and others.

For this, Greenspector supports its customers in the eco-design of products throughout the life cycle of the project, but also in the measurement of consumption and the monitoring of impacts over time, in addition (for example) to an improvement process. These are the principles that we also apply to our own products.

In order to work for a digital system that respects people and the planet, it seems essential to apply these values right down to the proposed working framework: allow everyone the possibility of teleworking as much as necessary, insist on the right to disconnect and give everyone the opportunity to adapt their schedules to their own needs. There is also the desire to free up time for everyone to carry out digital monitoring, to create spaces to share the results of this monitoring and to support the development of skills.

Resources to go further

The resources to become aware of digital sobriety are multiplying, but here are already two good starting points : 

CMS, No Code or without CMS, which solution to choose for a sober website?

Reading Time: 6 minutes

Today, we are studying the impact of solutions allowing the implementation of websites without knowledge of coding. Among these solutions, we can include CMS (Content Management System) but also No Code solutions.

This article is the first in a series where we analyze the measurements of 1500 sites through our tools.
In these articles, we will deal with the impact of technologies, and parameters…

Methodology disclaimer:

We have measured more than 1500 sites on real devices via our benchmark suites allowing the realization of automated tests (launch of the site, waiting, scrolling, sitting in the background). We then retrieve technology information from these sites via the WepAnalyzer solution.

We have chosen to focus our analysis on energy consumption. Consuming energy affects battery life on user devices, which ultimately impacts the environment.

How to read the graphs?

We visualize the data by “box plot” graphs:

  • The centre bar indicates the median. The rankings are made with this data.
  • The top and bottom of the box are bounded by the 25th and 75th quantiles.
  • The size of the box is called the interquartile range (IQR)
  • The bars at the top and bottom are the whiskers and delimit the expected values
  • Whiskers expand at 1.5 IQR
  • Values ​​outside the whiskers are visualized via dots. They represent either errors or outliers.

We deliberately discarded sites that did not have enough samples (for example less than 10 sites with a certain technology).

How are CMS and No Code solutions positioned?

Ranking of CMS according to the median value of energy.

We find the most widespread technologies (according to Web Core Vitals), apart from Shopify (these sites must be classified in the “No CMS” category).

We observe a 20% difference between the most efficient solution (Ametys) and the least efficient (Webflow).

Three CMS are positioned ahead of sites without CMS. Popular CMS like Drupal and WordPress are lagging behind. The last four solutions are No Code solutions.

There are many outliers in some categories (WordPress, sites without CMS). It is explained by a large data set (several hundred sites). An exploratory analysis of these sites generally shows that they are sites with fairly heavy streaming processing (such as video). Here is an example of a site positioned in “outlier“ the loading and idle stage (inactive site) consume a lot given an animation that runs continuously.

Quelques pistes d’explications à l’analyse des CMS :

Ametys: a domain-specific CMS

Ametys is a specific CMS which is used for institutional sites. Our ranking of school websites, in which many schools use this technology, explains its presence in this ranking. Its good positioning would have to be analyzed from a technical point of view. However, we can deduce that a solution that targets a type of need will be more optimizable than a generic solution. The integration of multiple functionalities in a CMS will indeed lead to overconsumption. We also observe that these institutional sites include fewer modules than the other sites. It is ultimately about functional sobriety.

Squarespace: an all-in-one solution

Squarespace is a publisher-hosted CMS. On the sites analyzed, we can identify there are few requests (<30), so there are potentially integrated optimization solutions. In other tracks, all the resources are hosted on Squarespace, and the assets (or assets) are on dedicated servers. The hosting of the CMS by the publisher is indeed a good thing because it will allow systematic and shared optimizations. However, this is not necessarily native. The editor must apply it.

Typo 3: native optimization options

Typo 3 which is an open source solution is in 3rd position. An HTTP Archive ranking is confirming this positioning. Fine cache management and native optimization options explain this performance.

Sites without CMS

Sites without CMS integrate a heterogeneity of technical solutions. It is difficult to draw conclusions. However, the median of the sites is positioned very well compared to other solutions (No Code, WordPress, Drupal, etc.). The low moustache is the lowest compared to all the other solutions. As a result, significant efficiency can be achieved more easily.

Drupal: a professional CMS

Drupal is positioned just after sites without a CMS. The good positioning of this CMS is explained by its less accessible setup and start-up process than WordPress.

Contentful: a headless CMS

Contentful is a “no interface” CMS. It allows you to publish content from other tools. The efficiency gain is present for the publication (because we do not use our usual tools). However, we observe that this CMS is just as efficient as a classic CMS.

WordPress : un CMS simple et très répandu

The WordPress platform is very popular and offers many plugins and themes. But genericity and modularity come at a price. Non-technical users can use this CMS. A potential explosion of plugins and non-configuration of the CMS in terms of performance and efficiency are the counterparts. We see in relation to the low moustache that the CMS can be efficient. However, this requires a lot of work.

Wix, Webflow, SiteCore, Adobe: No Code or equivalent solutions

These solutions offer the user the possibility of creating a website without coding knowledge. The median is high. The low whiskers are also higher than other solutions. It shows that they are heavier solutions.

Conclusion 

From a statistical point of view, CMS solutions do not all have the same efficiency. The initial design, taking into account optimizations, will be essential to achieve good performance (case of Typo 3). We observe that end-to-end control, combined with good practices implementations (Squarespace), also makes it possible to achieve a good efficiency level. In the same way, specializing in a CMS (Ametys) and therefore the options that go with it will allow you to obtain good results.

However, on the other hand, making a very generic and modular CMS (WordPress), even if potentially efficient initially, will bring bloatware. In the same way, the No Code will add a heaviness. It remains to identify the causes of this heaviness. Indeed, it can come from levels of abstraction but also from rendering possibilities (interactivity, animations, etc.) which are easily possible and which lead the user to add more than is necessary. In addition, the use of a “generalist” CMS is also potentially representative of a lack of precision in the need.

For a CMS solution (and more generally any solution), sobriety will not be innate. It will be necessary to apply a set of good practices:

  • Efficient architecture and technology, although if we take current technologies the difference between the solutions is very small, and the impact comes more from the misuse of technologies.
  • Native integrations of optimizations or easily activated by use.
  • Functionality limitation mechanism or in any case sensitizing the user to bloatware.
  • More generally, think about the end-to-end issue, taking into account hosting, and CDN (Content Delivery Network); without going to end-to-end managed solutions, we see that the distribution of systems is not necessarily a good thing.
  • In order to always offer more flexibility to the user, and among other things to allow non-technical people to create sites, it is necessary to integrate optimization solutions natively, which is not at all currently the case.

Do you want to include a CMS in this ranking? Contact us and send us at least 20 links to sites using technology, we will integrate them into the measures and within our ranking!

For our next article, we will go into the finer analysis of WordPress data to observe which parameters and configurations influence environmental performance.

Does a sober site have to be ugly?

Reading Time: 8 minutes

Today, we focus on a question that comes up very often when we address the question of web eco-design or digital sobriety: is an eco-designed site necessarily ugly? Often, the request consists of obtaining examples of “pretty and eco-designed sites” (preferably with a purpose similar to the current project). Specialists in web accessibility have no doubt encountered this type of question frequently. It is already not easy to define what would be, in absolute terms, a “pretty” site. The concept is itself very subjective.

We will therefore proceed differently. We will first compile a list of sites that are sober. There are lists and directories for this, which will be listed later. After compiling the list, we will do a quick analysis to exclude sites that are not as sober as advertised (too much data transfer, too many requests, etc.). Finally, we will use the Greenspector tool to decide between them (by classifying them and identifying those that are more impactful at first sight).

Finally, armed with this list, we will look at what they look like and try to identify design trends, depending on their purposes (an information site does not necessarily look like an e-commerce site or a web agency, for example). Moreover, it will provide an opportunity to keep in mind other aspects of Digital Sobriety, such as accessibility. Having a site that is light and pleasant to look at does not make sense if it is unusable for part of the population.

The purpose here is to offer a list of websites with a lower environmental impact. Everyone is free to find those that seem attractive to them and that correspond to their expectations (in terms of purpose, target, etc.). Thus, this list could be a source of counter-arguments concerning eco-designed sites which would necessarily be ugly. It can also be a way to find sources of inspiration in order to design eco-designed and attractive sites.

Where are the sober sites? 

We have chosen to go through the lists and catalogues of sober sites, with the bonus of other sites crossed elsewhere.

Here are the lists in question:

There are probably others, but this is already a good starting sample. If you have others in mind or want to test your site’s sobriety, do not hesitate to contact us.

A first analysis was carried out with this first list (more than a hundred references in the end). This is mainly based on the Network tab of the DevTools to watch the HTTP requests and the amount of data transferred.

In the end, only about forty sites are left, which are then used for a benchmark with the Greenspector tool.

Sober sites: the verdict by measurement 

The benchmark of the selected sites makes it possible to classify them according to their respective EcoScores (the idea being to obtain an EcoScore as close as possible to 100).

RankingURLEcoscoreEnergy (mAh)Data (Mo)Requests HTTPCarbon Impact (gEqCO2)Water Surface (Litres)Land use (m²)
1https://kuroneko.io/fr/944.240.1420.180.040.46
2https://lesraisonnees.co/944.080.21110.190.040.45
3https://brawcoli.fr/924.080.13110.190.040.45
4https://solar.lowtechmagazine.com/924.350.35170.210.040.48
5https://www.pikselkraft.com/914.350.1130.190.040.48
6https://amap-chelles.net/904.590.3440.20.040.5
7https://primitive.wildandslow.fr/904.10.16110.190.040.45
8https://productfornetzero.com903.990.17140.190.040.44
9https://www.mountain-riders.org/904.310.23190.210.040.48
10https://fairness.coop/894.280.09140.20.040.47
11https://jeudi.am/894.470.15200.220.040.5
12https://www.boavizta.org/894.260.2790.20.040.47
13https://lowtechlab.org/fr874.090.2260.180.040.45
14https://www.gov.uk/874.350.24150.210.040.48
15https://www.treebal.green/874.190.8170.210.040.47
16https://www.boutique-natali.com/864.840.44250.250.040.54
17https://designersethiques.org/854.060.28170.20.040.45
18https://oceanfifty.com/854.630.42140.220.040.51
19https://anelym.fr/844.640.17230.230.040.52
20https://lowimpact.organicbasics.com/eur844.650.74330.260.040.53
21https://www.europeansleeper.eu/en844.330.73310.240.040.49
22http://www.biocoopmontreuil.fr/834.750.53230.240.040.53
23https://www.licoornes.coop/824.370.17280.220.040.49
24https://empreintedigitale.fr/814.261.14260.240.040.48
25https://www.international-alert.org/814.670.83280.250.040.53
26https://www.laboutiquedupartage.fr/814.770.31200.230.040.53
27https://www.light-communication.fr/814.530.19130.210.040.5
28https://dolo.biz/fr/804.811.19150.250.040.53
29https://www.polybion.bio/804.881.02100.240.040.54
30https://zugvoegelfestival.org/794.260.52440.250.040.49
31https://pathtech.coop/774.550.6660.210.040.5
32https://dalkia.fr/764.280.89380.250.040.49
33https://sustainablewebdesign.org/764.881.02430.290.050.56
34https://palaeyewear.com/744.511.19780.320.050.54
35https://themarkup.org/735.271.13140.260.050.58
36https://www.ademe.fr/724.750.64260.250.040.53
37https://theadccawards.ca/715.460.2960.240.050.6
38https://flowty.site/636.910.35210.320.060.77
39https://heylow.world/626.140.35190.290.050.68
40https://becolourful.co.uk/606.150.23150.280.050.68
41https://www.ec-lyon.fr/595.060.81430.290.050.58
42https://www.wholegraindigital.com/588.650.65250.410.080.96
43https://daviddaumer.com/507.830.32130.350.070.86

For each of its websites, measured on an S7 smartphone (Android 8), the measurements were carried out using our Greenspector Benchmark Runner, allowing automated tests to be carried out. The measurements were taken at the end of June 2022.

Scenario details:
– Loading the website
– Page scroll
– Inactivity website in foreground
– Website inactivity in the background

Each measurement is the average of 3 homogeneous measurements (with a low standard deviation). The consumption measured on the given smartphone according to a wifi type network may be different on a laptop PC with a wired network for example. For each of the iterations, the cache is first emptied.

Find out how Greenspector assesses the environmental footprint of a digital service.

By classifying the results (by EcoScore) and looking at the extremes, we already notice two things:

  • Some sites have scores above 80 or even 90. This is a rare occurrence and highlights sites that have made an effort to maintain digital sobriety.
  • Some sites have an abnormally “low” EcoScore. Thus, these are rather light sites, but they are still impactful.

https://daviddaumer.com/ (EcoScore Greenspector 50): few requests on the page, little data transfer. We look with EcoIndex, and the score A is obtained (which is the best possible score). EcoScores drop due to animations that continuously drain the device’s battery. Therefore, by displaying this page, the battery is discharged faster, which increases its wear and predicts the need to replace the battery. It induces heavy environmental impacts, most of which come from the device fabrication. The impact of CSS and JS processing should be limited. Are animations necessary? What are their accessibility and attention capture impacts?

The reasoning is pretty much the same for:

In the end, the examples illustrate the need to consider all factors before claiming that a site is sober or has benefited from eco-design. It is good to make efforts to reduce the number of requests and the amount of data transferred. On the other hand, JS or CSS treatments (more particularly animations) can cancel out a good part of the benefits thus obtained. Especially (and I insist on this point) that these animations potentially have a detrimental effect in terms of capturing attention but above all accessibility. On this subject, I invite you to refer, among other things, to criterion 13.8 of the RGAA (On each web page, is each moving or flashing content controllable by the user?). The most glaring example here is https://heylow.world/ with its very present animations which further impair readability for all users.

Analysis of the ranking of sober sites 

We started with what to avoid to produce an eco-designed website that is visually pleasing without sacrificing usability. Let’s now take a closer look at the sites to extract relevant examples.

We can already consider the list of sites with an EcoScore > 70% as sites on which a sobriety effort has been made. It remains to be seen what can make them attractive and which ones to highlight.

Note: to avoid possible bias, we haven’t included the Greenspector site has not been included (even if its EcoScore is around 72).

E-commerce

The list contains 3 e-commerce sites:

https://lowimpact.organicbasics.com: as of this writing, the standard site is under maintenance. In the “low impact” version, the choice of sobriety is clearly displayed. The focus is on simple shapes (via SVG) and solid colours. On the other hand, it is regrettable that this version is not the default version of the site. This significantly undermines the impact of this approach.

https://palaeyewear.com: the homepage is rather light and pleasant. It includes the classic elements for such a site: a video (integrated soberly), some products, consumer opinions, some news, an impact report, etc. Several good efficiency practices are not respected but this page is doing better than most other e-commerce sites. Everything gets complicated when you access a product sheet. Here, more than 100 requests and several MB of data are transferred. The eco-design effort should therefore have been pushed further, in particular by basing itself on a user journey (navigation and purchase of a product) rather than only on the home page.

https://www.boutique-natali.com: On this page, we also find several elements specific to this type of site (current promotions, reinsurance elements, products highlighted, etc.) in addition to highlighting the eco-design approach implemented. The same sobriety can be found on the product sheets. Admittedly, some types of products sold online probably require more images (for example in the field of fashion or cosmetics) but in my opinion, this is a good basis for thinking about designing an online store. light and pleasant to use.

Magazines and online press

https://themarkup.org is a sober and elegant site at the same time, which is all the more remarkable for the online press. These sites are usually weighed down by advertising and trackers, among other things, which is not the case here. An important site to keep in mind is an example of an eco-designed online press site. Be careful, however, the lightness of this site compared to other similar sites is partly due to choices of an economic model. Once again, this highlights the role that all the actors of a project have to play on the subject of digital sobriety.

https://solar.lowtechmagazine.com: This is probably one of the best-known examples. The radical choice of environmental impact reduction is clearly displayed here. This will not necessarily be unanimous (notably because of dithering).

We find a similar logic on the Designers Ethiques site (layout similar to an old-fashioned paper newspaper for a more sober result) or even (for the structure) on that of Pikselkraft. The Low-tech Lab site, if it takes up certain elements, goes to a page richer in content and with a less rigid structure. The home page then seems more attractive and the content easier to identify.

Others sites 

https://lesraisonnees.co: a scroll-based one-page site. An agency site with classic content but produced in a very sober and efficient way, very clear. A very good example.

https://brawcoli.fr: the classic elements are grouped together on a single page, putting well before what this restaurant offers.

https://primitive.wildandslow.fr: we find in the list of many agency sites or freelancers specialising in the creation of sober sites (which is logical and even reassuring). The idea is generally to present everything on a single page with solid colours and few images (all optimised). Primitive by Wild&Slow is quite representative while standing out, among other things, for areas with non-linear contours. In other cases, the emphasis is on geometric shapes rather than more complex images.

https://www.treebal.green is a much richer variant graphically and for all that quite sober.

https://www.mountain-riders.org is a good example of using the principles seen above with a very contrasting graphic charter for a clean and attractive final rendering.

Although it may seem less attractive than others, https://www.gov.uk shines with its lightness and accessibility. Great efforts have been made here at the level of information architecture. It is in any case interesting to have here an example of accessible and sober public service.

Even if continuous and ubiquitous animations are to be avoided, some lightweight sites use them sparingly:

In any case, it is advisable to keep in mind the accessibility as well as the fact that this type of addition is only cosmetic. For some sites like https://dolo.biz/, the attractiveness of the home page relies heavily on the animations but everything remains efficient and rather pleasant (even if it will not necessarily be practical for everyone’s navigation, in particular, the keyboard).

In a totally subjective way, I also retain https://zugvoegelfestival.org for the choice of colours and navigation on the home page. It is just unfortunate that the various navigation elements on the site are not available (at least by click) upon arrival on the site.

And a last special mention for https://sustainablewebdesign.org which uses geometric shapes, and bright colours and emphasises accessibility while being a mine of information on web eco-design.

Conclusion 

The ranking presented here should give you a better idea of what is possible with a sober website. This list is expected to grow over time and serve as an inspiration for those who wish to create sober websites.

One must consider accessibility when using a site and dig as deep as necessary into the notion of sobriety if the feeling one can get is partly subjective.

Metaverse and Digital Sobriety

Reading Time: 5 minutes

The concept of the Metaverse isn’t new, and some may even remember Second Life, some consider it to be its first manifestation. The idea is to offer a virtual environment via what is now called XR (eXtended Reality), a mixture of augmented reality (a bit like Pokemon Go) and virtual reality (the older ones will think of the film The Lawnmower Man but we will prefer the example of Oculus Quest).

In October 2021, Meta (formerly called Facebook) announced that it was going all out on the subject of the Metaverse. A huge amount of investment is needed to create 10,000 jobs and train those who will work in this field. Many large companies have followed suit so as not to miss out.

The ultimate goal would be to provide users with a potentially 3D immersive environment where they could find their favourite brands and interact with whoever they want without leaving their homes.

Coupled with cryptocurrencies and NFTs, the metaverse would even be one of the pillars of Web3.

Like connected glasses, this is a digital Arlesian, and we are entitled to wonder if this new attempt will be successful this time. Except that the real question is whether the metaverse is compatible with current issues related to digital, which we find in particular through Responsible Digital.

Metaverse and Digital Sobriety

By taking up the main challenges of Responsible Digital, let’s see what we can expect from the metaverse. 

Accessibility 

While more than 96% of websites have at least one accessibility error, the accessibility of the web as it exists today remains very problematic. Likewise, remember that access to the web remains complicated for a large part of the world’s population, whether due to an outdated device, an insufficient internet connection or simply insufficient skills to be able to fully use the digital tools. Including these three issues, Digital illiteracy affects 17% of the French population.

In such conditions, it’s a safe bet that the metaverse will not come to fix things. In the metaverse, those who are unable to access the web in satisfactory conditions today will probably be left out. Not to mention that the prerequisites in terms of the device power and internet connection may be much higher (but we will come back to this later).

Security 

Digital illiteracy has a substantial impact on security: if individuals are not sufficiently prepared to use digital tools, they are exposed to risks they cannot control. There is no doubt that the metaverse will come with new attack opportunities. We can already imagine to what extent such an immersive universe and today also linked to major brands can offer new vectors for phishing. It is also to be feared that, in order not to interfere with the immersion or the comfort of the users, safety takes a back seat.

Capturing (and manipulation) attention

Attention capture (see French CNUM report in PDF) consists of setting up design mechanisms (scatological mechanisms or dark patterns) to retain the user’s attention for as long as possible. In the metaverse, one can imagine that this will only get worse, one of the objectives being immersion. We are exposed to more than 5000 advertising stimuli each day, especially via the web. Based on the list of companies contributing to the metaverse, this is unlikely to succeed.

How, under these conditions, will our filter bubble evolve? Is there not a risk of seeing the influence of certain digital players on the political context increase? Should we be worried about Meta taking over the subject of the metaverse (in short: yes)?

Here are just a few questions among many others (on the moderation of this new shared space, the rights to the content that will be (re-)produced there, etc.).

Digital Sobriety

It is interesting to consider the metaverse from the angle of environmental impacts.

You will quite easily find experts extolling the merits of the metaverse to unclog the roads, project yourself into spacious offices at a lower cost, perform surgeries from the other side of the world, etc.

It’s always thrilling to hope that someone will come up with a product that solves a whole host of issues we didn’t even know existed. In this specific case, I would be in favour of the Design is the Problem approach. Nathan Shedroff explains how to rethink design in order to come up with truly sustainable solutions. He takes the example of the Segway PT, a personal, electric and removable/repairable transport device. Presented in this way, one would think that it would be a good idea for the planet. Except that the real concern of this device is that it does not meet a real user need. Indeed, public transport, cycling and walking can ideally replace it, with a much lower impact and financial cost. Any resemblance to electric scooters is purely coincidental (or not).

The metaverse poses the same problem in its very concept: it seeks to meet a myriad of diverse and varied needs, even though less impactful and costly alternatives exist. Only its technical and innovative varnish promotes its adoption and leads large companies to blindly embark on it.

In order to assess the environmental impact of the metaverse, several elements must be considered.

  • On the one hand, generating and displaying an immersive virtual environment is very resource-intensive. Below 90 fps, the user is exposed to nausea and dizziness. In addition, in recent years, everyone has been able to discover increasingly magnificent 3D virtual environments (largely through video games). It, therefore, seems essential to align with these types of visuals, which will be costly both for their products and for their display.
  • On the other hand, the use of the metaverse (in particular taking into account the elements indicated in the previous point) will probably require better user equipment (even new user equipment) as well as an internet connection with a very high speed (would not be -what to display a virtual environment while holding the 90 fps). Knowing that very logically (and this is also what we have clearly seen with video games), renderings and attendance should (if all goes well for the metaverse) increase over time, encouraging the race to renew equipment.

Even as initiatives are multiplying to reduce the environmental footprint of digital technology, the arrival of the metaverse, therefore, represents a major risk.

Conclusion 

Efforts to extend Responsible Digital principles to the web are increasingly intense, and the work is already colossal. The arrival of Web3 and more particularly of the metaverse risks making these principles all the more essential but also more difficult to enforce. It seems (for once) easier to generate jobs and spend crazy sums for a concept whose usefulness remains to be proven than to work to make the web less impactful and more accessible for all.

The metaverse may indeed be designed with an eye to efficiency, or may even follow certain principles of Responsible Digital (though I seriously doubt this). In any case, the very nature of the project suggests that sobriety is not considered. It is all the more regrettable as the Digital Responsible itself contains the elements and principles that would help the achievement and adoption of the metaverse. However, the priorities seem to be different, and we can only regret to see once again the means of concentrating on something that will probably not contribute to making the web better. In the end, the metaverse seems to go against the efforts needed to mitigate climate change.

ChangeNOW 2022: Digital Sobriety Ranking of Partner Websites

Reading Time: < 1 minute

On the occasion of the ChangeNOW 2022 event, taking place from May 19 to 21 at the Grand Palais Éphémère in Paris, Greenspector measured the environmental footprint of the websites of the partners of the event.

Ranking of the environmental footprint of partners

The average carbon impact over one minute of navigation by these 98 partners is 0.50 gEqCO2, or the equivalent of 4.5 meters travelled in a light vehicle. Only 31 websites are above this average, which indicates a good trend. The soberest website in this ranking (the ADEME site, 0.2 gEqCO2) has 8.1 times less impact than the least sober site (heforshe, 1.62 gEqCO2).

The average power consumption (mAh) is 5.23 mAh, and an average of 8.36 MB of exchanged data. The average of web requests is 78.

RankingNameURLsEcoscoreCarbon Impact (gEqCO2)Energy Consumption (mAh)Exchanged data (Mo)RequestsWater Footprint (Liters)Surface footprint (m²)
1ademehttps://www.ademe.fr/760.23.630.63270.040.41
2ashokahttps://www.ashoka.org/fr-fr660.233.840.95330.040.44
3bsrhttps://www.bsr.org/fr/710.233.61.26400.040.42
4goodtechlabhttps://goodtechlab.io/560.243.090.04770.040.38
5makeFRhttps://make.org/FR700.243.793.28130.040.42
6microsofthttps://www.microsoft.com/560.244.051.08310.040.46
7sustainableventureshttps://www.sustainableventures.co.uk/710.244.141.41300.040.47
8ubuntuhttps://www.ubuntu-fr.org/700.243.582.61260.040.41
9maifhttps://www.maif.fr/690.253.911.54380.040.45
10parisandcohttps://www.parisandco.paris/730.253.582.68320.040.41
11franceinvesthttps://www.franceinvest.eu/660.263.960.82560.040.46
12toniichttps://toniic.com/670.273.891.12560.040.46
13pour un reveil ecologiquehttps://pour-un-reveil-ecologique.org/fr/510.284.222.39400.040.49
14usbeketricaenhttps://usbeketrica.com/en560.285.121.84210.050.57
15grandpalaishttps://www.grandpalais.fr/en710.283.630.92750.040.44
16mjashhttps://www.mjash.fr/710.284.121.08600.040.48
17greentech.earthhttps://www.greentech.earth/570.33.913.49480.040.46
18saint-gobainhttps://www.saint-gobain.com/en610.33.732.25700.040.45
19evpahttps://evpa.eu.com/510.314.232.63580.050.5
20capgeminihttps://www.capgemini.com/670.313.81.97740.050.46
21whocareschronicleshttps://www.whocareschronicles.com/550.314.14.1400.050.47
22changemakerxchangehttps://changemakerxchange.org/360.325.851.82290.060.66
23climateseedhttps://climateseed.com/fr640.323.854.02540.050.45
24halcyonhousehttps://www.halcyonhouse.org/690.323.695.37370.040.43
25fresqueduclimathttps://fresqueduclimat.org/510.3341.55950.050.49
26jokkolabshttps://jokkolabs.net/560.334.042.39790.050.49
27socialnesthttps://socialnest.org/470.334.532.76580.050.53
28leparisienhttps://www.leparisien.fr/530.334.562.17690.050.54
29Moët Hennessyhttps://www.lvmh.com/houses/wines-spirits/600.344.182.02850.050.51
30cleantechopenhttps://www.cleantechopen.org/490.354.394.56490.050.51
31unhcrhttps://www.unhcr.org/260.354.362.72770.050.52
32Bnpparibashttps://group.bnpparibas/en/600.364.282.1950.050.52
33swen-cphttps://www.swen-cp.fr/460.363.954.11770.050.48
34yunusandyouthhttps://yunusandyouth.com/400.364.332.58870.050.52
35lfca.earthhttps://lfca.earth/ALL_fr/570.374.362.97880.050.53
36bcorporationhttps://www.bcorporation.net/en-us/510.375.172.47710.060.61
37unwomenenhttps://www.unwomen.org/en490.374.255.29590.050.5
38bmw-foundationenhttps://bmw-foundation.org/en/470.394.645.38570.050.54
39financefortomorrowhttps://financefortomorrow.com/410.395.293.24690.060.62
40cdp.netenhttps://www.cdp.net/en520.394.765.77510.060.55
41inwinkhttps://www.inwink.com/fr/340.394.993.31770.060.59
42unescohttps://fr.unesco.org/450.44.34.57900.060.52
43rockstarthttps://rockstart.com/350.45.83.74550.060.67
44cartierwomensinitiativehttps://www.cartierwomensinitiative.com/420.45.853.38580.060.67
45mirovahttps://www.mirova.com/fr360.45.871.92840.060.69
46fastforward2030http://fastforward2030.com/420.414.827.56370.060.56
47solarimpulsehttps://solarimpulse.com/480.415.423.33830.060.64
48bridgeforbillionshttps://www.bridgeforbillions.org/50.415.842.6770.060.68
49CNNhttps://edition.cnn.com/440.425.254.13800.060.62
50makesensehttps://makesense.org/490.424.357.31600.060.52
51bcghttps://www.bcg.com/480.424.594.74920.060.56
52kairos-societyhttps://www.kairos-society.eu/370.424.513.441090.060.56
53springwisehttps://www.springwise.com/580.433.937.36810.050.48
54acumenhttps://acumen.org/390.444.943.511090.060.6
55gsgiihttps://gsgii.org/400.444.773.61180.060.59
56gecinahttps://www.gecina.fr/en630.454.099.01600.060.49
57impactfrancehttps://www.impactfrance.eco/360.457.034.47440.070.8
58orangehttps://www.orange.com/fr510.454.592.941400.060.58
59arrowhttps://www.arrow.com/360.465.992.641090.070.72
60socialenterprisehttps://www.socialenterprise.org.uk/280.465.18.69470.060.59
61aiglehttps://www.aigle.com/fr/fr380.475.388.48490.060.63
62kickstarthttps://kickstart.org/410.493.9810.04780.060.49
63paperontherockshttps://paperontherocks.com/430.494.5210.36600.060.54
643dexperiencelabhttps://3dexperiencelab.3ds.com/en/520.54.249.51860.060.52
65citeohttps://www.citeo.com/380.56.874.47820.080.8
66eibenindexhttps://www.eib.org/en/index.htm470.55.384.791230.070.66
67respectoceanhttps://www.respectocean.com/400.54.859.18740.060.58
68unreasonablegrouphttps://unreasonablegroup.com/360.5175.9660.080.81
69euclidnetworkhttps://euclidnetwork.eu/330.535.36.681170.070.65
70Founder Institutehttps://fi.co/410.545.577.671020.070.67
71KPMGhttps://home.kpmg/xx/en/home.html360.546.238.5690.070.73
72time-planethttps://www.time-planet.com/fr260.545.499.02870.070.66
73sweephttps://www.sweep.net/370.558.514.92650.090.97
74onepercentfortheplanethttps://www.onepercentfortheplanet.org/520.564.5412.69750.070.55
75lesechoshttps://www.lesechos.fr/440.587.065.71170.080.84
76phenixcapitalgrouphttps://www.phenixcapitalgroup.com/310.585.4910.21940.070.66
77lacaserneparishttps://www.lacaserneparis.com/420.695.7416.16760.080.69
78startupbootcamphttps://www.startupbootcamp.org/200.695.3316.9770.080.65
79endeavorhttps://endeavor.org/590.74.5620.03630.080.56
80terresdecafehttps://www.terresdecafe.com/en/300.75.917.322120.090.77
81ctofrancehttps://www.ctofrance.com/280.7610.296.091400.111.21
82cereshomepagehttps://ceres.org/homepage550.774.9621.57740.080.61
83The Hoffmann Global Institute for Business and Societyhttps://www.insead.edu/centres/the-hoffmann-global-institute-for-business-and-society330.785.4712.072070.090.73
84Start Up Energy Transitionhttps://www.startup-energy-transition.com/390.78170.93360.151.88
85hello-tomorrowhttps://hello-tomorrow.org/490.824.3924.08910.080.56
86bonduelleenhttps://www.bonduelle.com/en/540.824.5124.95740.080.57
87ship2bhttps://www.ship2b.org/470.825.674.773340.10.81
88ebanhttps://www.eban.org/290.888.3117.931070.110.99
89undphttps://www.undp.org/340.897.5523.86540.10.89
90oneyoungworldhttps://www.oneyoungworld.com/410.924.9129.65630.090.61
91apcoworldwidehttps://apcoworldwide.com/240.987.118.792000.110.91
92sparknewshttps://www.sparknews.com/350.995.9121.042090.110.79
93aptarhttps://www.aptar.com/301.037.4728.63790.110.9
94lafrenchtechhttps://lafrenchtech.com/fr/101.096.9232.9770.110.84
95nordictalkshttps://nordictalks.com/381.095.733.321090.110.73
96keringhttps://www.kering.com/281.1510.2626.971070.141.21
97merciraymondhttps://merciraymond.fr/351.46.4952.19260.130.79
98heforshehttps://www.heforshe.org/fr421.629.0656.94290.161.08

Greenspector has been selected for the third consecutive year by the organization to participate and exhibit at ChangeNOW, the unmissable event and the biggest global event for the planet.

Find us on site in the “Accelerate the Ecosystem” area from May 19 to 21 at the Grand Palais Éphémère in Paris. We will answer all your questions. Do not hesitate to contact us to schedule an appointment!

Each of its websites and applications was measured using our Greenspector Benchmark Runner on an S7 smartphone (Android 8), allowing automated tests to be run.

Scenario details:
– Application loading
– Inactivity website in foreground
– Scroll
– Website inactivity in the background

Each measurement is averaging 5 homogeneous measurements (with a low standard deviation). The consumption measured on a given smartphone on a wifi type network may be different on a laptop PC using a wired network, for example. The cache is first emptied for each iteration.

Find out how Greenspector assesses the environmental footprint of a digital service.

CAPTCHA and digital sobriety

Reading Time: 3 minutes

Security is an essential part of responsible digital. It is not uncommon to wonder how to protect your site, especially when you allow the possibility of sending content from your website: form (in particular contact), comments, etc. We know that a good part of the activity on the web is not due to humans (How much of the internet is fake?). Nobody wants to undergo an injection or other malicious act via their website.

At the end of the 90s, a miracle solution appeared in the form of CAPTCHA. Today, we find this component almost everywhere. You may need to copy difficult-to-read characters, click on photos with different elements, or click on a box to confirm that you are not a robot.

But what about its environmental impact? How to reconcile it with digital sobriety? That’s what we’re going to see here!

Looking for the best solution

The CAPTCHA meets the need to secure the data submitted by Internet users on your site.

The problem is that this way of doing things, among others with reCAPTCHA, is often laborious for users. Additionally, the user journey is longer, which increases the environmental impact of digital services when it does not result in abandonment altogether. Especially for users with disabilities who may find it impossible to complete the task. Not to mention the additional requests (CSS, JS and other iframes) necessary to integrate this type of component into a page.

Thus (and this is an essential point of responsible digital), the search for the soberest CAPTCHA takes accessibility into account first.

The accessibility of CAPTCHAs is a recurring problem, and there are many solutions. The main watchword here is not to use CAPTCHAs. Thus, form security should no longer be the responsibility of users. The subject has been previously discussed, among others at Orange.

There are several possibilities:  

  • Identify the entry time to exclude entries that are too fast
  • Use a filter (regular expression or other) to identify suspicious responses 
  • Randomly add a question that a bot will not necessarily be able to answer (“Which animal is barking?”, “How much is one plus one?”, “How many d’s in pudding?”, etc.). By leaving the possibility of refreshing the question in case of difficulty for the user.
  • The honeypot (to which we will return)

In the end, it is the honeypot solution that seems the most adequate in most cases. Detailed elsewhere on a Canadian government site, it consists of adding a hidden field in the form concerned. This field should be set to be filled out only by bots. It does this by hiding it from users and assistive technologies while giving bots code elements that make them think it’s a required field. This means that when validating the form, responses with this field filled in should not be taken into account. While the honeypot requires some thought for flawless implementation, it remains very light and elegant because it keeps the focus on the original goal: to prevent bots from sending data through a digital service. Rather than impacting the user to ensure that he is not a robot, we leave the user journey intact to focus on bot detection.

Conclusion 

The example of CAPTCHA proves to be representative of a responsible digital approach. In order to improve the security of a digital service, we are first interested in the accessibility of possible solutions (the free and widely used solution not being here again necessarily the best) to finally ensure via digital sobriety that the chosen solution does not degrade the environmental impact of the service.

Digital sobriety for more resilience

Reading Time: 2 minutes

A weak industry

The Covid-19 crisis has made visible weaknesses in the world of digital and electronics: an interdependence of economic and technical systems. The 2020 confinements led to a drastic reduction, or even a halt in the production of electronic circuits in China, impacting worldwide production (Example of the iPhone 13 and its stock shortages).

But the Covid-19 pandemic is not the only cause that has impacted the supply system. At the beginning of 2021, Taiwan was affected by a drought, another important place of production of electronic circuits, and this contributed to reinforcing the shortage already initiated.

Health crises and environmental crises can also be accompanied by geopolitical crises and wars. The war in Ukraine, for example, has lifted one more of the weaknesses in these complex supplies: risk in the production of neon lights, necessary for the manufacture of chips. These neon lights are mostly produced in Ukraine.

 

Sobriety is one of the resilience solutions

We can expect a resilience solution from the electronics industry through relocations, however, some solutions (relocation of material extraction) are difficult to visualize. In the same way, “digital sovereignty” would not be the solution to this problem, or in any case, it would “only” better deal with the dependency on server hardware.

Sobriety is primarily seen as a way to reduce one’s environmental footprint. It is true, but it also has the advantage (in the context of reducing the environmental impact) of extending the lifespan of equipment, reducing the consumption of resources (CPU for example), optimizing the capacity of the equipment…

Digital services and electronics are becoming more dependent on one another thanks to Sobriety benefits. Making digital soberer would therefore limit the impact of these crises.

Make no mistake

Although much discussed in the digital world, digital sobriety has still not been implemented enough. Its implementation costs are still being discussed, as well as its greater impact on hardware than on its use. It seems that endless debates continue on the network’s impact (focusing on energy and not CO2, disregarding global problems, etc. ). There are as well as counterarguments on whether it is necessary to optimize the CO2 impact of our solutions since we have low-carbon energy in France.

Dismissing the digital sobriety approach on the pretext of its drawbacks means not fully taking into account the place of digital technology in our world. Above all, it means continuing to develop tools that will potentially not work given their lack of resilience.

Allowing the operation of digital services on “low-end” equipment and limited networks is, for example, an approach that goes in the direction of digital sobriety. But this is only the beginning of a real process of sobriety. The road is long, and unfortunately, the crises are already here.

There can be no doubt that sobriety is essential in our young digital world

Optimizing the smartphones energy to reduce the impact of digital technology and avoid the depletion of natural resources

Reading Time: 6 minutes

Introduction

The lifespan of a smartphone averages 33 months. Knowing that a smartphone contains more than 60 materials, including rare earth elements and that its carbon footprint is between 27 and 38 kg eqCO2, the current rate of replacement of smartphones is too fast.

Different reasons can explain this rate of renewal. Loss of autonomy and battery problems are the main reasons (smartphone: one in three changes due to the battery). Increasing the capacity of the batteries is a solution that seems interesting but it would not solve the problem. Indeed, the data exchanged continues to increase and this has an impact on the power of smartphones. Websites are still just as heavy as before, even becoming heavier and heavier… So is this an unsolvable problem? What is the link between the autonomy that we experience in a personal capacity and this observation on the impact of digital technology?

Methodology

We started our analysis through web consumption. Indeed, mobile users spend an average of 4.2 hours per day browsing the web.

In a previous study on the impact of Android web browsers, we measured the consumption of 7 different websites on several web browsing applications from a mid-range smartphone, a Samsung Galaxy S7. This allows us to project this consumption onto global consumption and to apply optimization assumptions to identify room for maneuver.

Even if the uncertainties are high (diversity of mobile, diversity of use, etc.), this action allows us to identify the room for maneuver to improve the life cycle of smartphones. The choice of the Galaxy S7 makes it possible to have a smartphone close (within 1 year) to the average age of global smartphones (18 months).

What is the annual consumption of web browsing on mobile?

Here are our initial assumptions:

The estimated annual consumption of smartphones is 2,774 billion ampere-hours. Not very tangible? Considering that an average 3000mAh battery can go through 500 full charge/discharge cycles before it starts to be unusable and that 1,850 million batteries are used each year to browse the web. Does this figure seem exaggerated to you? There are 5.66 billion smartphones in the world, this would correspond to a problem that would affect 36% of the global fleet each year. If we consider that 39% of users will change their smartphone for battery reasons and only 26% of users will replace the batteries if they wear out, we get the figure of 1,200 million batteries, which corroborates our figures. Not inconsistent at the end, when you look at the phone and battery renewal cycles.

Would reducing the consumption of browsers have an impact?

Web browsers are important engines in the consumption of the web. Our measurements show significant differences in power consumption between browsers. These differences are explained by heterogeneous implementations and performance. In the following graph, the consumption of browsing on 7 sites, including the launch of the browser, the use of features such as writing URLs, and the navigation itself is visualized.

We start with a hypothesis of publishers optimizing browsers. By considering a hypothetical consumption of all browsers equal to that of the soberest (Firefox Focus), we obtain a reduction in the total annual consumption which makes it possible, with the same assumptions on the lifespan, to save 400 million batteries per year. Knowing that 1,500 million smartphones are sold per year, taking the same assumptions as before on replacement and repair rates, this would save 7% of the fleet of phones sold each year.

Would reducing the consumption of sites have an impact?

It is also possible that the websites are much soberer. We have assumed a consumption close to that of Wikipedia. From our point of view, having audited and measured many sites is possible but by taking important actions: optimization of functionalities, reduction of advertising and tracking, technical optimization …  

Here is an example of the representation of the energy consumption of the Team website. We see that the load will consume up to 3 times the reference consumption. The optimization margin is enormous in this precise case, knowing that many sites arrive at a factor of less than x2.

In the case of sober websites, by taking the same assumptions and calculation methods as for the sobriety of browsers, we could save 294 million batteries per year, or reduce the renewal of the fleet annually by 5%.

Is reducing the consumption of the OS possible and would have an impact? 

The question about the impact of hardware and OS often arises. To take this impact into account, we have several data at our disposal. An important piece of data is the benchmark consumption of the smartphone. It is the consumption of the hardware and the OS. For the Galaxy S7, this consumption is 50µAh / s.

By taking the same assumptions as those taken to calculate the total consumption (2,774 billion Ah), the annual consumption attributed to the material and OS share would be 1,268 billion ampere-hours or 45% of the total consumption. 

So is this the glass tray of optimization? Not really because there is a lot of space for optimization: Android itself for example. We have carried out an experiment that shows that it is possible to significantly reduce the consumption of Android functionalities. The builders’ overlays are also a way to reduce consumption.

Based on our experience, we estimate that a 5% reduction in consumption is totally possible. This would save 350 million batteries or 6% of the fleet.

What environmental gains can we hope for?

Applying digital sobriety at different levels would reduce the global number of used batteries per year by more than half. 

Even on the assumption that users do not systematically renew their smartphones for reasons of loss of autonomy or only replace their used battery, the annual smartphone renewal could be reduced by 17%.

In the best-case scenario, assuming that most users will replace their batteries, the potential savings would be 2 million TCO2eq. But the gains could be much greater if you consider that replacement practices are not changing fast enough and that users are changing smartphones rather than batteries: 47 million TeqCO2.

By being optimistic about an increase in battery capacity, no increase in the impact of software, and an unincreased impact of the larger batteries, the number of batteries used could be halved, in the same way, the environmental impact by two. But is it still enough? Rather go for an increase in the capacity of the batteries and a decrease in energy consumption and then obtain a gain of 4 on the impact by multiplying the capacity by two! 

Energy on a smartphone, small drops but a huge impact in the end

We are under the impression that the energy is unlimited, we just need to charge our smartphone. However, even if the energy was unlimited and without impact, the batteries are consumables. The more we use them, the more we wear them out, and the more we use non-renewable resources such as rare earth elements, not to mention other environmental, social, and geopolitical costs. We can expect technological developments to improve capacity and improve battery replaceability, but the savings are huge. Replacing the batteries is not the miracle solution because even if we extend the life of the smartphone, the battery must be thrown away or recycled, and recycling of Lithium is not yet assured (P.57). Gigantic because we use our smartphones for many hours. Gigantic because we are billions of users.

The exercise that we have carried out is totally forward-looking; all browser editors should integrate sobriety, all sites be eco-designed. It does show, however, that optimizing the energy of apps and websites makes sense in the digital environmental footprint. Some people seeing only the energy of recharging neglect this aspect. However, as we can see in this projection, the environmental gains are much greater.

This figure is significant and at the same time low: 47 million Teq CO2 for the world, this is 6% of the French footprint. However, CO2 is not the only metric to look at. Another significant problem, for example, the shortage of lithium in 2025 but also water.

To all this, we should add issues associated with new practices and new materials:

… the sector is constantly evolving to respond to challenges that are sometimes commercial, sometimes economic, sometimes regulatory. The battery example illustrates this trend well. While we had become familiar with the “classic” lithium-ion batteries which mainly contain lithium, carbon, fluorine, phosphorus, cobalt, manganese, and aluminum, new models have appeared, first lithium-ion-polymer batteries then lithium-metal-polymer batteries. The possible metal procession, already substantial, has therefore been considerably increased; with iron, vanadium, manganese, nickel but also rare earth elements (cerium, lanthanum, neodymium, and praseodymium).

SystExt Association (Extractive Systems and Environments)  https://www.systext.org/node/968 

Taking into account the environmental, social, and geopolitical issues involved with batteries, dividing the number of batteries used by 2 is really not enough! This means that the optimization wells should now be activated. And if we want to achieve ambitious goals, all players, manufacturers, OS and browser editors, digital players … have their share of the work. Continue to incant magical reductions resulting from technologies, to say that energy should not be optimized, to transfer the fault to other actors or other sectors, to explain that focusing on uses is a mistake … that shift the problem. We all need to roll up our sleeves and solve the problem now!

 

What resources should be reduced in the context of good software eco-design practices: Processing on the server-side or on the user side?

Reading Time: 2 minutes

One of the first answers to the question “what resources” is: all! But it is necessary to have a more specific answer because certain practices will favor an economy on the server-side, others on the memory side rather than the CPU. There are winning optimizations for all areas but unfortunately, the behavior of computer systems is more capricious!

The guiding principle is to extend the life of the hardware, whether for the terminal or for the servers. We will see that for environmental gains, reducing energy will also be an improvement axis.

In a previous article, we discussed the need for energy optimization in the case of mobile devices. Today we are trying to answer the question: what architecture to put in place, and in particular to put processing on the user side or on the server-side? 

The answer is: server-side processing to be preferred …

The answer is quite simple: let’s load the servers! Indeed, when we take LCA and impact analyzes, we observe a much stronger impact on the user side (Example with our study on the impact of playing a video). The servers are shared and are optimized to absorb a load. The manager can also manage load fluctuations with Power Capping (peak load absorption while maintaining controlled energy consumption). The lifespan of the servers can also be managed (hardware that can last up to 10 years). Compliance with a Green IT policy can also be better monitored and shared.

Terminals, on the other hand, despite having powerful processors, do not have these advantages. Very little control of the lifespan, no management of the health of the system, fragmentation of powers and therefore of behavior …

… but watch out for resources and scalability

While it is better to put the computations on the server-side, this is no excuse for not maximizing the impact on the server-side. Scalability is possible but must be monitored. Because adding a virtual instance will have an impact on the future need to add a physical machine and therefore will increase the environmental impact.

In addition, limiting power consumption will be necessary because a high demand for power will transfer into an increase in the power consumed on the server rack and higher cooling needs.

And the cost of the round trips of the network round trips in this case?

The question appears on network exchanges if we move calculations to the server-side. This is currently a false problem because there is too much exchange. The network resource and servers being seen as “free” and the architectures going more and more towards the service/microservice, the processing on the user side calls too much the data centers. It will be necessary rather control the number of network exchanges, whatever the choice of architecture.

Is this currently the case in architectural practices?

This has not been the trend in recent years. Indeed, the arrival of powerful user platforms, i.e. with multicore processors and high-performance network connections, have pushed a lot of processing to the user side. Development Frameworks, especially JavaScript Frameworks, made this possible.

However, the trend is starting to reverse. We can notably mention Server-Side Rendering (SSR) with for example next.js or the generation of static blogs with Hugo. We can also see techniques maximizing the use of elements already present on the user’s terminal such as the web browser engine by using CSS rather than JS.

We will try to answer in the next articles: which resources (CPU, memory …) should we optimize as a priority?

Users smartphones: all about the environmental impact and battery wear

Reading Time: 4 minutes

User terminals: the high environmental impact of the manufacturing phase

User terminals are now the biggest contributors to the environmental impact of digital technology and this phenomenon is set to increase. This trend is mainly explained by the increasingly important equipment of households with smartphones, by a reduced lifespan of this equipment, and by the fact that it has a significant environmental impact. An impact mainly due to the smartphone manufacturing phase. The Ericson brand announces, for instance, an impact in use (i.e. linked to recharging the smartphone battery with energy) of 7 kg eqCO2 out of a total impact of 57 kg eqCO2, or only 12% of the total impact. The total impact takes into account the different phases of the smartphone life cycle: manufacture, distribution, use, treatment of the smartphone at the end of its life.

Hence the interest that manufacturers work on this embodied energy by eco-designing but also by improving the possibility of increasing the life of the equipment through repairability but also durability.

Regarding all these observations, it could seem unproductive from an environmental point of view to reduce the energy consumption of smartphones. In any case, the simplistic approach would be to put that impact aside. But the reality is quite different and the electrical flows that are involved in the use of mobile devices are much more complex than one might think.

Explanation of battery operation

Current smartphones are powered by batteries with Lithium-ion technology. On average, the capacities of the batteries on the market are 3000 mAh. The trend is to increase this capacity. The battery can be thought of as consumable, just like a printer cartridge. It wears out over time and the original capacity you had when you bought the smartphone is no longer fully available. That is, the 100% indicated by the phone no longer corresponds to 3000 mAh but to a lower capacity. And this initial capacity cannot then be recovered.

Battery wear is primarily created by a full charge and discharge cycles. A recharge/discharge cycle corresponds to an empty battery that would be recharged to 100%. I leave home in the morning with a phone 100% charged, the battery drains, I charge my phone 100% in the evening. A complete cycle in one day therefore!

If you charge your phone more often, you can cycle more (several incomplete cycles are ultimately equivalent to one complete cycle).

The more the number of cycles increases, the more the remaining capacity decreases. This wear leads to the end of battery life. Current technologies allow up to 500 cycles.

At the end of the cycle, the battery capacity is only 70% of the initial capacity. Beyond this annoying loss of autonomy, the battery suffers from certain anomalies, such as a rapid drop from a battery level from 10% to 0%.

Note that this effect will be reinforced by the intensity of the battery discharge: if the phone consumes a lot (for example during video playback), then the battery wear will be greater.

Impact on obsolescence

The loss of autonomy is a cause of renewal by users: 39% in 2018. This phenomenon is reinforced by the fact that the batteries are increasingly non-removable, which leads to a complete replacement of the smartphone by the user. In addition, even if the decrease in autonomy is not the only replacement criterion, it will be added to the other causes to create a set of signs indicating to the user that he must change his smartphone (marketing effect, power, new features…).

We can therefore easily make the link between the mAh consumed by the applications and the kg of CO2 due to the production of CO2. By reducing these mAhs, we would greatly reduce the wear of the battery, the life of smartphones would be extended on average and therefore the initial CO2 cost would be more profitable. The smartphone mAh has a much greater cost on the embodied energy of the smartphone (manufacture) than on the impact of energy to recharge it.

For example, for a classic smartphone, we have 0.22 mgCo2 / mAh for the recharged energy compared to 14mgCo2 / mAh.

Technological solution

Solving this problem can always be seen through the technological axis: increase in capacities, fast loading … If we take the case of fast loading, this will not change the problem, on the contrary, it will worsen its potentially increasing cycles. It is not by increasing the fuel tank of cars that we will reduce the impact of the automobile. Improving battery technology is beneficial, however, reducing the consumption of smartphones would be even more beneficial for the environment and the user.

Note that the CO2 impact is not only to be taken, indeed the manufacture of batteries is overall very expensive in environmental and social terms. Not to mention strategic resources with geopolitical impacts such as cobalt or lithium. Extending battery life is critical.