7 Minutes Workout vs Home Workout

Reading Time: 3 minutes

For this special “stay at home” battle, two applications offering full-body workout will oppose:  7 Minutes Workout vs Home Workout.

In the left corner 7 Minutes Workout, the application, which has more than 3,000,000 users, offers sports training lasting 7 minutes based on the HICT (high intensity training circuit).

In the right corner  Home Workout, app part of the Leap Fitness Group which offers daily exercise routines for all major muscle groups.

The weighting

At weighing Home Workout is the most caloric application with a weight of 43 MB. The  7 Minutes Workout application is 14% lighter with a weight of 37 MB.

The fight

The athletes are getting ready to compete on a full-app challenge program!

The first part of the program naturally consists of observing the launch phase (or warm-up) of the application. 7 Minutes Workout (1,71 mAh) wins the first round by consuming 24% less than its opponent Home Workout (2,25 mAh). During the second round which corresponds to the scenario of the user journey (carrying out a beginner sports program), it is always 7 Minutes Workout (5,61 mAh) which leads to Home Workout (6,92 mAh) with lower consumption by 19%. To put an end to this confrontation, we have set up two decisive rounds to observe the rest phases of each opponent. While we are at the stretching stage, Home Workout takes over on 7 Minutes Workout by consuming 18% less in the inactivity stage in the foreground. The applications are neck and neck for the inactive phase in the background, however 7 Minutes Workout takes over by consuming 6% less than its opponent!

The bell rings! End of training!

The winner

Without any surprie, the 7 Minutes Workout app won this match with an overall score of 9,48 mAh to 11,19 mAh, or 15% less battery consumption compared to its opponent Home Workout. Note that 7 Minutes Workout is also less consumer in terms of data exchanged, 16 KB against 2,8 MB for Home Workout.

If we project the journey for one minute in carbon impact, the 7 Minutes Workout application consumes 0,10 gEqCO2 or the equivalent of 0.88 meters performed in a light vehicle against 0,39 gEqCO2 for Home Workout or the equivalent of 3.51 meters.

For those who like numbers

ApplicationVersionDownloadsPlaystore Grade Application weight (MB) Exchanged data scenario (KB) Memory consumption scenario (MB)Energy consumption (mAh)
7 Minutes Workout1.363.111 10 000 000+4,8370.0162799,48
Exercices à la maison1.0.42 50 000 000+4,8432.837711,19

On a 1-minute usage scenario, 7 Minutes Workout’s energy consumption is equivalent to a direct messaging application such as Line. As for Home Workout, its consumption is similar to an application such as a social network such as Facebook Like. (Source: Study Consumption of top 30 most popular mobile applications) .

The measurements were carried out by our laboratory on the basis of a standardized protocol, respecting a specific user scenario (launch of the app, search for a workout, workout exercices). The other scenarios are the launch of the application (20”), inactivity in the foreground (20”) and inactivity in the background (20”). This methodology makes it possible to estimate the embedded application complexity and its energy impact during the use phase.

The Carbon Impact calculation is based on a projection according to the OneByte methodology of the Shift Project for the server and network part. Assumption calculated according to network and datacenter impact in France, for network connectivity 50% Wi-Fi, 50% mobile network, device life based on 500 full charge / discharge cycles.

The main figures of the carbon impact of e-commerce in France

Reading Time: 6 minutes

E-commerce sites are high traffic sites (11 million per month) and therefore have an impact reinforced by the volume of use and significant time of use (visit> 5 minutes). In addition, driven by strong growth in e-commerce, longer journey times and more and more mobility, oversized infrastructures to ensure a good level of response time, the e-commerce site makes an ideal candidate for a Carbon assessment of a digital service with environmental responsibility associated with mass services.

Methodology

The assessment scope is based on the impact of the 100 most visited sites in France over the second half of 2019. It is therefore not exhaustive since the calculations do not take into account all the e-commerce sites with lower traffic.

How to assess the Carbon Impact of an e-commerce site?

To know the Carbon impact of an e-commerce web service, we worked on a simplified method based on real measurements.


On the Datacenter and Network side, we project the Carbon Impact from the consumption of data exchanged with the device (OneByte method of the ShiftProject).

On the User device, a real measurement on a mid-range Android smartphone equipped with a Chrome browser is launched 3 times and averaged before being projected with a Carbon impact factor taking into account the following assumptions: WiFi mix – GPS network, 50% brightness, phone battery wear at 500 full charge/discharge cycles.

The average impact of a course (= 1 visit)

The visit, on average of 5 minutes and 28 seconds on an e-commerce website in France on a smartphone device, has a carbon impact of 2 gCO2eq equivalent to 18 meters traveled by a light vehicle. Or 56 visits to an average e-commerce site impact 1 km driven with an average light vehicle.

The distribution of the sites is fairly homogeneous between 0.5 and 3 grams with some extreme values. Nevertheless, there are large differences: from 0.5 g to 34 g EqCO2, -> ie a ratio of X68 between the 100 Top E-Commerce sites in France. These differences can be qualified by taking into account that the visit time varies by a factor of 5 (from 3 to 15 minutes).

When we project the impacts on monthly visits, an e-commerce website has an average carbon impact of 23.8 Tons CO2eq/month.

The sum of the impacts of the top 100 e-commerce sites is 2380 Tons EqCO2/month, the equivalent of the impact of 21 million km of an average car in France or 531 rounds of the Earth by car or 19,636 average vehicles circulating in France corresponding to the fleet of an agglomeration of 40,000 inhabitants.

Projected over one year, it is 28.6 MegaTons Eq CO2!

Average impact of a page

In order to compare e-commerce sites with each other, the visit time or the number of steps or page views during the visit must be isolated. To do this, we go back to the basic measurement of a page for 1 minute.

A page from an e-commerce website in France has an average impact of 0.36 g CO2 eq.

In simple projection: 1,000 pages viewed for 1 minute on an average smartphone have an average carbon impact equivalent to 3.2 km from a light vehicle. The detailed ranking of the Top 100 e-commerce websites is available here. It will be likely to vary during future updates or request for re-measurement.

Breakdown of sites visited

Large difference: from 0.5 g to 34 g EqCO2, i.e. a ratio of X 68 between the 100 top e-commerce sites in France.

To explain this significant variation in impact, we can note that:

  • The data consumption ranges from 0.6 MB to 55 MB, or a ratio of X 92, this is the most discriminating factor explaining the differences in impact.
  • the energy consumption on the mobile device varies by a factor of 4.7

It is the network part that has the most impact with a share of 69% of the average impact of an e-commerce site on mobile.

If the mobile were replaced by a PC with a wired connection, the “User workstation” part would be much more important. This distribution of impact of course varies with the e-commerce site.

Low impact website case


Compliance with best practices on the network and low consumption on the device

Eco score Greenspector: 81/100, best Eco score of the Top 100 E-Commerce

Equivalent of 161,675 km of a light vehicle for 24.5 million visits / month (Source: Similarweb S2 2019)

Heavy impact website case

No respect for best practices on the network and high consumption on the device

Eco score Greenspector: 21/100, the lowest Eco score of the Top 100 E-Commerce

Equivalent to 44,582 km of a light vehicle for 2.1 million visits/month.

More impactful categories of sites than others?

A ratio of 1 to 3 on the impacts per page between categories

We have about 3 times more carbon impact by browsing a fashion e-commerce site than on an Automotive or Leisure site.

Rq: a single site classified in the Good Plans category

Projected earnings:

If all the sites were aligned with the most virtuous site in our measurements, we could save over a full year:

  • 15,177 tonnes of CO2eq, more than half of the impacts
  • Or 53% reduction in carbon impact
  • The equivalent of 4050 rounds of the earth by car

The major levers for improvement:

E-commerce websites can reduce network volume

  • Adapt content to device / type of connection & connection quality
  • Compression of rich content
  • User cache to avoid content already loaded on a previous visit
  • Limit the number of requests (internal, advertising, external services, etc.)
  • Beware of unsuitable pre-loads

E-commerce sites that can reduce their energy and battery consumption

  • Allow rapid interaction
  • Reduction in the consumption of scripts in the pages (3D animation, graphic animation, etc.)
  • Reduction of trackers / monitoring
  • External services to be evaluated / optimized
  • Reduced travel time
  • A design / graphics / color to optimize

Correlation analysis of carbon data

Correlation analysis between carbon impact and display performance

By taking 20 values from our sample for which we collected performance data, we can validate that there is no correlation between Carbon impacts and Display performance.

The 2 best performing sites are nevertheless also the least impactful sites

The Carbon indicator is an indicator in its own right for the management of an e-commerce website

Correlation analysis between Impact Carbone and Eco score Greenspector

The estimated Carbon indicator does not take into account other parameters, such as memory consumption, CPU, number of requests, or compliance with good practices, etc.
The Eco score includes both the consumption of resources/energy but also a note on compliance with good practices.

There is a “satisfactory” correlation between the estimated Carbon impact and the measured Ecoscore Greenspector.

Please note, the Carbon indicator does not cover all environmental indicators.

The carbon impact of the Top 100 E-Commerce websites

Reading Time: < 1 minute

Sales made on e-commerce sites are increasing each year, more and more on the go or from a smartphone at home. We have never consumed so much through these web platforms as we do today. A debate persists between the ecological impact of e-commerce in terms of logistics compared to a purchase made in-store. It all depends on certain parameters (delivery time, geographic location of the store, logistical means used, etc.). In addition to this logistical question, there is the environmental impact of digital technology for e-commerce purchases. How can we estimate the part that these online purchases represent in terms of the environmental impact of our life as consumers?

To answer this question on e-commerce in France, we took as a basis the ranking of the largest e-commerce sites in France (Top 100 E-Commerce: E-Commerce Nation & SimilarWeb study) and we add to your asks other sites. We measure the consumption of energy and resources on a mid-range smartphone which allows us to assess the carbon impacts on the entire chain: device (Greenspector methodology), network, and datacenter (OneByte method of the ShiftProject). This evaluation is done on the basis of the home page of the e-commerce site and on the basis of a 1-minute protocol. The Greenspector eco score completes the assessment of the site both by respecting good practices but also by measuring other metrics of resources not assessed in the Carbon impact.

Ranking of the carbon impact of the Top 100 E-commerce websites

PositionWebsiteTotal gEqCO2 per page/minuteEcoscore
(/100)
Measurement date
1https://fr.hotels.com/0.116713-03-2020
2https://www.leroymerlin.fr/0.128113-03-2020
3https://www.microsoft.com/fr-fr0.126413-03-2020
4https://www.naturabuy.fr/0.136113-03-2020
5https://www.airfrance.fr/0.137113-03-2020
6https://www.decathlon.fr/0.154813-03-2020
7https://www.veepee.fr0.157813-03-2020
8https://www.norauto.fr/0.156513-03-2020
9https://www.galerieslafayette.com/0.157213-03-2020
10https://www.rueducommerce.fr/0.157813-03-2020
11https://www.thomann.de/fr/index.html0.155813-03-2020
12https://www.zalando-prive.fr/0.164613-03-2020
13https://www.showroomprive.com/0.167113-03-2020
14https://www.groupon.fr/0.165413-03-2020
15https://www.laredoute.fr/0.167813-03-2020
16https://www.oscaro.com/0.175013-03-2020
17https://www.leclercdrive.fr/0.174813-03-2020
18https://www.cultura.com/0.187213-03-2020
19https://www.booking.com/0.184113-03-2020
20https://www.darty.com/0.195813-03-2020
21https://www.ticketmaster.fr/0.196013-03-2020
22https://www.fnac.com/0.195113-03-2020
23https://www.kiabi.com/0.196113-03-2020
24https://www.brandalley.fr/0.206513-03-2020
25https://www.voyage-prive.com0.206413-03-2020
26https://www.gemo.fr/0.205313-03-2020
27https://www.trainline.fr/0.205913-03-2020
28https://www.etsy.com/fr/0.206513-03-2020
29https://www.expedia.fr/0.216513-03-2020
30https://www.manomano.fr/0.216813-03-2020
31https://www.aliexpress.com/0.225913-03-2020
32https://www.leboncoin.fr/0.226813-03-2020
33https://www.ugc.fr/0.226113-03-2020
34https://www.fnacspectacles.com/0.226313-03-2020
35https://www.ryanair.com/fr/fr/0.236013-03-2020
36https://www.feuvert.fr/0.236513-03-2020
37https://www.but.fr/0.234713-03-2020
38https://www.sephora.fr/0.234113-03-2020
39https://fr.bazarchic.com/0.246613-03-2020
40https://www.bricodepot.fr/0.245313-03-2020
41https://all.accor.com/france/index.fr.shtml0.247113-03-2020
42https://www.intermarche.com/0.247613-03-2020
43https://www.boulanger.com/0.254513-03-2020
44https://www.apple.com/fr/0.267313-03-2020
45https://www.fr.lastminute.com/0.264713-03-2020
46https://www.intersport.fr/0.267413-03-2020
47https://fr.gearbest.com/0.264213-03-2020
48https://www.promod.fr/0.265813-03-2020
49https://www.etam.com/0.275413-03-2020
50https://www.blancheporte.fr/0.275913-03-2020
51https://www.asos.fr/0.285213-03-2020
52https://www.zalando.fr/0.284313-03-2020
53https://www.materiel.net/0.287213-03-2020
54https://www.alibaba.com/0.283713-03-2020
55https://www.bricoprive.com/0.294513-03-2020
56https://www.leclercvoyages.com/0.296313-03-2020
57https://www.bonprix.fr/0.296113-03-2020
58https://www.vertbaudet.fr/0.303613-03-2020
59https://www.cdiscount.com/0.305113-03-2020
60https://www.cinemaspathegaumont.com/0.317113-03-2020
61https://www.auchan.fr/0.316613-03-2020
62https://www.ebay.fr/0.315113-03-2020
63https://www.yves-rocher.fr0.313513-03-2020
64https://www.ldlc.com/0.315013-03-2020
65https://fr.shein.com/0.313913-03-2020
66https://www.just-eat.fr/0.325113-03-2020
67https://www.lahalle.com/0.325413-03-2020
68https://www.carrefour.fr/0.323513-03-2020
69https://www.spartoo.com/0.336513-03-2020
70https://www.zooplus.fr/0.343813-03-2020
71https://www.digitick.com/0.342713-03-2020
72https://www.maisonsdumonde.com/FR/fr0.353913-03-2020
73https://www.camaieu.fr/0.363013-03-2020
74https://www.ubaldi.com/accueil/0.364013-03-2020
75https://www2.hm.com/fr_fr/index.html0.366613-03-2020
76https://www.oui.sncf/0.374113-03-2020
77https://www.electrodepot.fr/0.373013-03-2020
78https://www.easyjet.com/fr0.384813-03-2020
79https://www.privatesportshop.fr/0.384413-03-2020
80https://www.sarenza.com/0.386813-03-2020
81https://www.vinted.fr/0.406213-03-2020
82https://www.castorama.fr/0.405713-03-2020
83https://www.instant-gaming.com/fr/0.404213-03-2020
84https://www.ouigo.com/0.426213-03-2020
85https://www.nocibe.fr/0.424113-03-2020
86https://www.amazon.fr/0.444413-03-2020
87https://www.samsung.com/fr/0.462213-03-2020
88https://www.aroma-zone.com/0.464613-03-2020
89https://www.ikea.com/fr/fr/0.473413-03-2020
90https://www.nike.com/fr/0.482713-03-2020
91https://www.conforama.fr/0.494313-03-2020
92https://www.opodo.fr/0.502813-03-2020
93https://fr.shopping.rakuten.com/0.502613-03-2020
94https://www.gifi.fr/0.573813-03-2020
95https://www.airbnb.fr/0.615613-03-2020
96https://www.adidas.fr/0.655313-03-2020
97https://www.backmarket.fr/0.704113-03-2020
98https://www.micromania.fr/0.792113-03-2020
99https://www.wish.com/1.143513-03-2020
100https://www.zara.com/fr/5.713413-03-2020

Your e-commerce website is not in this ranking, contact-us to take a measurement and appear in this ranking!

Marmiton vs 750g

Reading Time: 3 minutes

For this special “stay at home” battle, two applications offering cooking recipes will oppose: Marmiton et 750g.

In the left corner  Marmiton, a French application launched in 2000 which lists more than 71,000 cooking recipes. Marmiton also has 12.8 million unique visitors each month.

In the right corner 750g, created in 2010, is the second site offering recipes and culinary advice the most visited in France (8 million unique visitors each month). This site and application offers more than 80,000 recipes.

The weighting

At weighing 750g is the most caloric application with a weight of 90 MB. The Marmiton application is 61% lighter with a weight of 56 MB, which makes it still a relatively heavy application.

The fight

The fighters are getting ready to go on the grill!

In the first part of the match which naturally consists in observing the launch phase of the application, 750g (2.75 mAh) wins the first round by consuming 7% less than its opponent Marmiton (2.93 mAh). In the second round that corresponds to the use scenario (search for a chocolate fondant recipe), it is always 750g (7.69 mAh) which leads to Marmiton (10.48 mAh) with a lower consumption of 36%. To end this confrontation, we have set up two decisive rounds of observation of the rest phases of each opponent. While we are at the tableware stage, the two applications consume in an equivalent manner for the observation phase in the foreground (1.24 mAh). Nevertheless, in the observation phase in the background, Marmiton is in the lead with 14% less consumption.

The timer sounds, end of cooking for our two applications!

The winner

Without any surprise, the 750g application wins this match with an overall score of 12.6 mAh to 15.4 mAh, i.e. 18% less battery consumption compared to its opponent Marmiton, for whom the check is salty… Note that 750g is also less consumer in terms of data exchanged, 286 KB against 693 KB on the side of Marmiton.

Note that these two applications are particularly rich in elements listed by Exodus Privacy as falling under tracking and analytics tools: 11 for Marmiton, 17 for 750g… It makes people squint on your plate.

For those who like numbers

ApplicationVersionDownloadsPlaystore GradeApplication weight (MB)Exchanged data (KB)Memory consumption (MB)Energy Consumption(mAh)
Marmiton5.2.43 5 000 000+4,59069364215,47
750g4.2.6 1 000 000+4,45628633912,63

On a 1-minute usage scenario, Marmiton’s energy consumption is equivalent to a navigation application such as Google Chrome. As for 750g, its consumption is similar to an application such as a social network such as Instagram. (Source: Study Consumption of top 30 most popular mobile applications)

The measurements were carried out by our laboratory on the basis of a standardized protocol, respecting a specific user scenario (launch of the app, search for a recipe). The other scenarios are the launch of the application (20”), inactivity in the foreground (20”) and inactivity in the background (20”). This methodology makes it possible to estimate the embedded application complexity and its energy impact during the use phase.

Which video conferencing mobile application to reduce your impact?

Reading Time: 5 minutes

Article updated with new measures on StarLeaf, Rainbow and Circuit by Unify on May 19, 2020.
Article updated with new measures on Hangouts and Google Meet on May 4, 2020.
Article updated with new measures on Tixeo and Infomaniak Meet on April 23, 2020.
Article updated with new measures on JITSI and Teams on April 15, 2020.

The current “stay at home” context mechanically increases the use of online collaboration tools, in particular videoconferencing tools. This leads to a pressure on the network and more particularly to a significant load on the servers of each solution. It is therefore important from an efficiency point of view but also an environmental impact one to choose the simplest and most efficient solution.

For this study, we compare 14 videoconferencing applications: Whereby, Webex (by CISCO), Skype, Zoom, JITSI, Microsoft Teams, Tixeo, Infomaniak Meet, Hangouts, GoToMeeting, Google Meet, StarLeaf, Rainbow and Circuit by Unify.

For each of these applications, measured on an Samsung S7 smartphone (Android 8), the following three scenarios were carried out through our GREENSPECTOR Test Runner, allowing manual tests to be carried out over a period of 1 minute:

  • Audio conference only in one-to-one
  • One-to-one audio and video conference (camera activated on each side)
  • One-to-one audio conference and screen sharing

Each measurement is the average of 3 homogeneous measurements (with a small standard deviation). The consumption measured on the given smartphone according to a Wi-Fi type network can be different on a laptop PC with a wired network for example.

Measurement of energy consumption (mAh)

The StarLeaf application consumes the most of all three scenarios. This is due to the fact that the consumption in audio only mode, audio + screen sharing or audio + video is the same. This is a special case of our study. The GoToMeeting application is the least energy-consuming, closely followed by Hangouts, Zoom and Webex.

The energy consumption of all these applications is on average 2.1 times higher when adding video to audio and only slightly higher when adding screen sharing to audio (+14%). It’s not a surprise, avoid sharing with a camera to consume less energy on your devices during your video conferences and save your autonomy and the lifespan of your battery!

Measurement of data exchanged (MB)

GoToMeeting and Webex are the two applications that consume the least data. JITSI and Infomaniak Meet are the ones that consumes the most. Overall and without any surprise we note that the audio scenario is the one that consumes the least data. While the scenario activating both audio + video stream is the most consuming one.

The data consumption of all of these applications is 13 times higher when adding video to audio and almost doubled when adding screen sharing to audio (+77%). It’s not a surprise, avoid sharing video and limit your screen sharing to consume less data on networks in your video conferences!

It should be noted that these significant differences are mainly due to the significant audio-video consumption of the JITSI application with 35 MB transferred in 1 minute compared to 1.13 MB for GoToMeeting! JITSI‘s optimized mode does not reduce this data impact (33.4 MB / minute). Infomaniak Meet based on the JITSI engine meets the same volume anomaly on average and mainly on the audio + video part without improvement with the optimized mode.

Projection of the measured carbon impact data (gEqCO2)

A conference on mobile is 3 times more impactful for the environment when we add video to audio.

The carbon impact projection of all of these applications is on average 3 times greater when adding video to audio and higher when adding screen sharing to audio (+35%). It’s no surprise, avoid sharing video and limit your screen sharing to less impact infrastructure (network, datacenter) and on your devices in the context of video conferences!

Without any surprise, a large part of the carbon impacts are located on the network part (63%) but the impacts part on the device (28%) should not be overlooked!

The JITSI and Infomaniak Meet apps even averages 5.8 times more impact when adding video to audio and 40% more when adding screen sharing.

In the Skype vs Teams battle at Microsoft, the overall results are very close (6%). The Carbon impact is lower for Skype with a lower data impact but higher energy consumption on the mobile than Teams.

Which applications optimize energy and data consumption?

Only Whereby and Webex could be tested on optimization features for the mobile version.

The Whereby application with its “Mobile mode” setting which limits the resolution of the stream as well as other resource consumption optimizations. And Webex thanks to its configuration allowing to deactivate High-definition playback of videos only. Whereby saves 21% on energy consumption on the audio side, 15% on the audio and video side and 3% on the screen sharing side. These gains are nevertheless low considering the results obtained by the application that consumes the most audio and video mode from our panel.

On the Webex side, the gains are barely visible as limited only to the video part. It’s barely 5% gain in the Audio and Video scenario for the energy and carbon impact. The exchanged data is even slightly higher in audio and video mode.

The optimized JITSI application does not improve the data or energy impact. Power consumption is even higher in screen sharing mode in this optimized mode. However, there is a reduction in the data loaded in this optimized but minor mode (11% on average). Same findings for Infomaniak Meet.

The optimization of the TIXEO parameters makes it possible to considerably reduce the impact in audio + video mode and allows it to be classified as the 2nd least impacting application in the panel.

As for the Zoom application, a notification of battery overconsumption appeared several times during the measurements. Although we can optimize the video quality on PC, it does not seem possible to configure this on mobile. Without this optimization, the application becomes the most energy-consuming application in audio + video mode.

GREENSPECTOR advices:

  • Promote audio only during your conferences: the video stream will tend to consume much more especially when sharing video via camera.
  • We recommend that publishers provide optimization options to the user and make them as accessible as possible even by default.
  • Prefer videoconferences over travel by car!
  • Comparison for 2 people who talk to each other for 3 hours in video + video (1 gEqCO2 on average per minute) when one of the two made 20 kms (112 g eqCO2 / km in France) round trip for a face-to-face face,
  • In videoconference: 180 * 1 * 2 = 360 gEqCO2.
  • By car: 112 * 20 = 2.4 kg EqCO2. Or 6.7 times more for the physical one-to-one.

Best 2019 Android apps and games ranking by GREENSPECTOR

Reading Time: 2 minutes

Google unveiled the best of 2019 Google Playstore in early December last year. Thanks to the GREENSPECTOR App Mark technology, we are revealing the ranking of these applications according to the App Mark, which assesses applications according to 5 criteria: performance, sobriety, discretion, inclusion and, of course, ecology.

Favorite 2019 applications ranking

At the top of this ranking we find the following three applications: Boosted, 21 Buttons and Omio. Only 1/3 of the applications are below the global ecoscore average. Among the 3 least sober applications of this ranking, 2 are strongly impacted by a zero score on at least one of the key indicators. In fact, the Plant Nanny application presents a score of zero on the ecological side (32 MB of data loaded during our evaluation), for the Curio application, it is the performance indicator which is zero, impacted by the time of application loading more than 23 seconds.

Focus on Boosted vs Music Zen

Here we compare the application with the best GREENSPECTOR App Mark (Bosted) versus the lowest ranked application in this ranking (Music Zen).

Even if the energy consumption is not the strong point of Boosted, MusicZen consumes 2 times more battery than Boosted on an identical route … what not to be “Zen” For its autonomy! Simple explanations: there are many trackers in this application which alters its performance and its sobriety. As a reminder, an added tracker also means an average of 8.5% more resource consumption.

Favorite 2019 games apps ranking

On the podium of the highest ranked game applications, we find: Assassin’s Creed Rebellion, Brawl Stars and Fishing Life. We observe that the last three game applications have a zero score for the ecology indicator. This is explained by two highly high technical criteria: the volume of data loaded as well as the CO2 impact. By the way, gaming applications are also more impactful on average than other applications.

Focus on Assassin’s Creed Rebellion vs Diner Dash Adventures

This time we are comparing the Assassin’s Creed Rebellion application versus Diner Dash Adventures.

To understand everything about these indicators, we invite you to read the following article 5 success keys for your application!

What are the best web browsers to use in 2020?

Reading Time: 8 minutes

The 2024 edition of this ranking is available! Read the study

The web browser is a main tool on a mobile device. Not only for websites but also for new applications based on web technologies (progressive web app, games, …).

In our 30 most popular mobile apps ranking, among the mails, direct messaging, social networks, browsers categories, web browsing and social networks are on average more consuming than games or multimedia applications. The ratio would be 1 to 4 between the least and most energy consuming applications.

Decreasing the environmental impact of the digital life and increasing the autonomy of phones go in part through the choice of a good browser. Just as if you want to reduce the impact of your mode of transport, it is important to take the most efficient vehicle.

Last year we published the 2018 ranking of the least energy-consuming browsers, we made a new edition for 2020, more complete, made with our GREENSPECTOR App Mark.

Overall Ranking

The average rating is 36/100 which is pretty mediocre. It can be explained by low notes for each of the metrics.
The three least energy-consuming browsers are: Vivaldi, Firefox Preview, Duck Duck Go.

Overall energy consumption (in mAh)

The median is 47 mAh and a large part of the browsers are in this consumption level (8/18 are in the 2nd quartile).
Note that the last 3 browsers in the ranking are recognized by a consumption 75% higher than the median. Firefox, Qwant and Opera Mini are indeed very energy intensive.

Energy consumption of navigation (in mAh)

The last 3 browsers of the global ranking (Opera Mini, Firefox and Qwant) as well as Mint consume much more than the average (between 20 and 35 mAh against 16 mAh).

It is sufficient to say that for most browsers (apart from the previous exceptions), pure navigation is not going to be the reason for the difference in overall consumption. This is mainly due to the use of visualization engines. Most browsers use the Chromium engine. For Opera Mini, the specificity is that a proxy is used and can compress the size of the sites. It seems that this proxy is not good for the energy, in fact the decompression on the user’s phone consumes a lot of energy.

For the Firefox app, over-consumption of energy is a known and shared thing, this is one of the reasons why Mozilla is under development of a new browser. Internal code name is Fenix ​​and public one is Preview. The measures in this ranking are rather encouraging on consumption (in the average).
For Qwant, this is due to the use of the Firefox engine! The measurements between Qwant and Firefox are indeed very close.

Power consumption of features (in mAh)

The main feature that is browsing the web also requires other important features: new tab opening, enter an address in the taskbar … Indeed, when we open a new tab, each browser offers different features: mainly used websites, latest news, …

On pure navigation, browsers differ little, there are significant differences in energy consumption on other features with a ratio of more than 3 (between 4 mAh and 12 mAh).

Note that the first 3 (Firefox Focus, Firefox Preview and Duck Duck Go) have a simple homepage. The consumption of the browser in Idle (inactivity) is then very low. Functional sobriety pays the consequences!

When launching browsers, the energy consumptions are quite similar to each other. Note, however, that opening a tab and writing a URL are actions that are performed several times. If we take a daily projection of 30 new tabs and 10 URL entries, we can still see the difference between browsers and the large advance of Firefox Preview and Focus!

The basic features are not insignificant in the overall consumption.

Projection of autonomy (in number of hours)

If we take this energy data and project it for a navigation of several websites, we identify the maximum time that the user can navigate to the complete discharge of his battery:

Data consumption (in MB)

The difference in data consumption between browsers (8 MB difference) is explained by the pure navigation and the different features.

On the navigation, we explain this difference:

  • some applications do not manage the cache at all for reasons of data protection and confidentiality (Firefox Focus)
  • proxy usage that optimizes data (Opera Mini)
  • a difference in the implementation of cache management. It is possible that some browsers invalidate the cache and that data is loaded while they are cached.
  • additional data consumption continues in the background (idle tabs, background data not blocked …)
  • download performance differences that increase the duration of the measurement. Indeed, if a browser is powerful, the counterpart is that many more data are potentially loaded in the background.

The difference in overall consumption can also be explained by the data consumption of the basic functionalities:

Many browsers are very consuming. We note the 3 MB of Qwant that seem abnormal!
It can be considered that for browsers, this consumption should be close to 0. Indeed, the main feature of a browser is to display a website, any feature (and associated consumption) can be considered as “over-consumption”.
In this context, many browsers consume data when writing the URL. This is mainly explained by the URL proposal features. There is indeed exchange between the mobile and the servers, either directly by the browser or by the associated search engine.

For example, for the Yandex browser below, the details of data exchanges when writing a URL show more than 400 KB of data exchanged.

In contrast, below, trading for Brave is frugal with less than 2 KB.

Browser performance (in seconds)

The measures allow us to evaluate the performance of the key features:

  • Launching the browser
  • Adding a tab
  • Writing a URL
  • Removing the cache
  • Mozilla Kraken Bench

NB: This study does not evaluate the display performance of websites. However, the Mozilla Kraken benchmark allows this in part by evaluating the functionality of browsers.

Efficiency of browsers (in mAh/s)

We can evaluate the efficiency of browsers by taking the performance of the Mozilla Kraken benchmark and the associated energy. Efficiency is the energy consumption per unit of time:

Samsung, Opera Mini and Opera are the most efficient browsers. This ranking is different from that of overall energy consumption. For Samsung Internet, this first place in terms of efficiency on a Samsung hardware can be explained by the optimized link that can have the manufacturer with a pre-installed software. The Opera browser has a good positioning (2nd for overall consumption and 3rd for efficiency).

Track of improvements

It is possible to improve the consumption of navigation.

For the user :

  • Choosing an efficient browser
  • Use bookmarks or favorites to avoid going through the entry bar
  • Configure the energy saving options of browsers (mode or dark theme, data server …)

For developers of sites:

  • Eco-design their site
  • Test and measure on different browsers to identify different behaviors and take them into account

For browser editors:

  • Measure energy consumption and efficiency
  • Eco-design features
  • Reduce resource consumption of recurring features (url write, new tab …)
  • Make the homepage as simple as possible.

Measurement protocol

The measurements were carried out by the laboratory GREENSPECTOR App Mark on the basis of a protocol Standardized: Samsung S7 Smartphone, Android 8, Wi-Fi, 50% brightness. Between 4 and 8 iterations were carried out and the value used is the average of these measurements. Measurement campaigns follow a scenario that evaluates browsers in different situations.

Evaluation of features

  • Launching the browser
  • Adding a tab
  • Writing a URL in the search bar
  • Remove tabs and clean the cache

Navigation

  • Launch of 6 sites and wait for 20 seconds to be representative of a user journey

Benchmark browser

Evaluation of browser inactivity periods

  • At launch (this allows to evaluate the homepage of the browser)
  • After navigation
  • After closing the browser (to identify closing problems)

For each iteration, the following tests are performed:

  • Deleting the cache and tabs (without measurement)
  • First measure
  • Second measure to measure the behavior with cache
  • Remove cache and tabs (with measure)
  • System shutdown of the browser (and not only a closure by the user to ensure a real closing of the browser)

The average measurement therefore takes into account a navigation with and without cache.

The main metrics analyzed are: display performance, power consumption, data exchange. Other metrics such as CPU consumption, memory consumption, system data … are measured but will not be displayed in this report. Contact GREENSPECTOR for more information.

In order to improve the stability of the measurements, the protocol is completely automated. We use an abstract GREENSPECTOR test description language that allows us to fully automate this protocol. Browser configurations are the default ones. We have not changed any settings of the browser or its search engine.

Rating

A notation out of 100 makes it possible to classify the browsers between them. It is based on the notation of 3 main metrics:

MetricDefinitionUnit
PerformanceDuration required for a test stepseconds (s)
EnergyBattery discharge rate found on the device during the test step, compared to the battery discharge rate of the device before the application is launchedMeasurements in uAh / s, then classification in multiples of the reference discharge velocity
DataTotal data volume (transmitted + received) during the test stepkilo-bytes (kB)

A weighting ratio is applied to the 5 step levels (from 5 for dark green to -1 for dark red) as described in the following example table:

The score of this application is then calculated at 61/100 for the energy metric.
Once the score of each of the three metrics obtained on 100 points, the total score of the application is calculated with equal weighting of the three metrics:
Total Score = (Performance Score + Energy Score + Score Data) / 3

Browsers evaluated

Browser nameVersion
Brave1.5.2
Chrome78.0.3904.108
Duck Duck Go5.32.3
Ecosia39632
Edge42.0.4.4052
Firefox68.3.0
Firefox Focus8.0.24
Firefox Preview2.3.0
KiwiQuadea
Lilo1.0.22
Maxthon5.2.3.3241
Mint37290
Opera54.3.2672.502
Opera Mini44.1.2254.143
Qwant37714
Samsung10.1.01.3
Vivaldi2.7.1624.277
Yandex19.10.2.116

Some browsers were discarded because they did not allow the tests automation. For instance, UC Browser and Dolphin browsers could not be measured. Beyond automation, this is a symptom of a accessibility issue of the application. To improve the accessibility of applications for people with visual impairments (among others), it is necessary to set up buttons labels. The automation that we realized is based on this information. In the end, these browsers do not appear in the ranking, but we can consider that accessibility problems are in all cases a crippling problem.

Note : The 2020 ranking is hardly comparable to that of 2018. Indeed, our protocol having completely evolved, the tests are thus more advanced and automated.

Discover our lastest study: the 2019 Playstore Efficiency Report!