
1© GREENSPECTOR

IMPROVING THE ENERGY EFFICIENCY
AND THE PERFORMANCE OF AN
ANDROID 7 CORE APPLICATION

Author: Olivier PHILIPPOT, GREENSPECTOR
Date: Jan 10th, 2017

2© GREENSPECTOR

Be sure to check out our others resources about
software ecodesign :

YES, I WANT TO LEARN MORE !

THANKS FOR
DOWNLOADING !

+33 (0) 9 51 44 55 79

contact@greenspector.com

https://greenspector.com/blog.html

3© GREENSPECTOR

EXECUTIVE SUMMARY

The application audited was the AOSP 7.0
core application “System UI” running on a
Nexus smartphone. The project lasted 2
weeks in November 2016.

We first conducted a set of measures on
the smartphone, using GREENSPECTOR
metering features and a dedicated
GREENSPECTOR energy probe. This
showed that System UI had a substantial
impact on the device, especially through
Status Bar and Recent Apps features.
Indeed, the energy consumption impact
was measured to be between 2.2 and 2.9
times higher than the reference scenario.

During the audit, several issues were
identified which correction could
potentially help to decrease this impact:

- A high number of triggered events,
which create unnecessary treatments
and redraws. These treatments impact
the platform resources even when in idle
mode.
- A high frequency (and thus impact) of the
animation and of the movement tracking
feature. The animation performance is
designed too high for the user to perceive
its quality.
- A heavy layout, which creates a lot of
consuming treatments and redraws
enforced during animations.

In the second part of the audit, we
modified the source code of System UI
to apply some of these changes. We were
able to obtain significant gains:

The GREENSPECTOR team has been asked by a customer to help in
optimizing an Android core application. The final goal was to reduce the
energy consumption of the app, or to improve its performance, or both.

- Removal of unnecessary triggerings of
redraws.
- Reduction from 250 ms to 150 ms of CPU
treatments when showing the Status Bar,
- Reduction of the number of calls to
several methods (up to 100 calls during
sliding actions),
- Reduction of energy consumed during
Show/Hide Status bar: - 28 −μAh/s (- 9%).

We spent 3 man.days on this code
refactoring task, including some initial
time necessary to understand the code.
The overall audit duration was 9 days for 2
consultants. This is very positive, since we
estimate that the gains could be more
important with a better knowledge of
the source code, and some more time to
apply the corrections to the application.

We demonstrated with this case study
that, provided you use the right method
– which involves energy consumption
measurement - you may try and optimize
any application, be it a part of the Android
core. Our approach based on software
eco-design principles allowed us to
identify areas of progress in a short time
frame. The implementation of the key
recommendations will permit not only
a reduction of the energy consumption
but also an increase of the hardware
lifespan.

The goal of this audit, which
was to improve the application
as per energy efficiency and
performance standards, has been
reached in a short time frame.

4© GREENSPECTOR

1.1.	 System description

The chosen platform was :
-	 Device: a Nexus Smartphone (Model: confidential)
-	 OS: Android 7.0 (Build AOSP on Angler - NRD90M)

1.2.	 Application

The application under test was a core Android application:
-	 System UI
-	 Version: from AOSP repository (1.0.3)

1.3.	 Use cases

The chosen use cases were features frequently used by the users:
-	 Open the status bar in minimal mode (use case name: ShowMiniStatusBar)
-	 Open the status bar entirely (ShowAllStatusBar)
-	 Hide the status bar (HideStatusBar)
-	 Show / Hide all the status Bar (ShowHideStatusBar)
-	 Open Recent Apps (OpenRecentApps)
-	 Clear All Recent Apps (ClearAllRecentApps)
-	 Show/ Hide Recent Apps (ShowHideRecentApps)

Another use case was used to measure the platform consumption in idle mode:
•	 Idle Mode (Reference)

All these test cases were automated using UIAutomator.

1. 	 AUDIT DESCRIPTION

Illustration 1: Quick bar Illustration 3: All status barIllustration 2: Show recent app

5© GREENSPECTOR

2.1. Methodology

General description of the methodology

For this audit, we used a classical top-down approach. We first launched a set of measures
to identify the most consuming features, then we went deeper into the analysis where there
were “hotspots” of resources consumption. An optimization phase was then conducted,
followed by the assessment of each progress done.

In the end, the hotspots having been corrected, the developers could switch to correcting
their source code with respect to an eco-design set of rules.

Drawing 1 : Synthetic methodology

2. METHODOLOGY & TEST BENCH SETTING

Features
measurement

Identification
of «Hotspots»

Profiling
Action plan
established

Optimization
Progress

measurement

Improving the
source code
with green

rules

Features measurement

The energy measurement allowed us to identify which features consume the most energy.
Without that identification, we couldn’t focus the correction effort, and this could lead to
working on some parts which have no or very little impact on energy consumption.
We focused on the following tests because they were designed for energy measurement
(duration of tests > 1 minute):
•	 Show / Hide all the status Bar (ShowHideStatusBar)
•	 Show/ Hide Recent App (ShowHideRecentApps)
•	 Idle Mode (Reference)

Hotspot profiling

When a “hotspot” had been detected (which means that a highly consuming test had
been identified), we then used classical profiling tools to get a better understanding about
the underlying behaviour. In parallel we used GREENSPECTOR Code Analysis feature, to
determine if some important code eco-design rules could be infringed and thus participate
in causing the hotspot.

6© GREENSPECTOR

2.2.	 Testbench description

GREENSPECTOR tools

Illustration 4 : Greenspector dashboard

The test bench was composed of the
GREENSPECTOR server installed on
our customer’s premises, and the
Android probe developed for this Nexus
device and this Android version. These
tools are available to all customers of
GREENSPECTOR.

Action plan, optimization and measurement

When the auditing part was done, we set an action plan which aimed at reducing the
energy consumption. The plan focused first on improving the “hotspots”, starting by the
hotspot with the highest Impact ratio.

After each correction, we performed another profiling test, in order to check if the hotspot
had been corrected or if it was still present. When a hotspot was suppressed, the next
hotspot in the list became the next priority.

Please note that, given the very short time frame of this audit, the hotspot optimizations
were applied as “quick and dirty modifications”, even if not fully functional, in order to see
if such a modification was interesting. “Cleaner” modifications could easily be performed
with the same principles, given some more development time.
We applied the modifications as increments, which allowed to check the gain of each
improvement.

Source code Analysis

After the removal of the main hotspots, we focused on the correction of the source code,
using the code eco-design rules for Android.

7© GREENSPECTOR

Testing environment
We used the following tools:
•	 Greenspector Server: to conduct the audit, gather and analyze the data,
•	 Greenspector Android Meter API: to link the smartphone probe to the test
case run,
•	 Android tools: Traceview, Systrace and Layout Hierarchy,
•	 Git: to work on the refactory steps,
The testing protocol was the following:
•	 Charge the smartphone between 95% and 100% (to have the same energy
behavior)
•	 Reboot the smartphone (to put it in a stable state)
•	 Unplug the USB cable or any other energy supply
•	 Run all the tests (always in the same order)
•	 Re-run the protocol x times to have stable measures.

3.1.	 Feature Measurement and identification of hotspots

We launched test runs for each of the functional cases that we had selected. As mentioned,
prior to running the functional test cases, we ran a Reference (or “idle”) test case to establish
the reference consumption for our platform.
The initial version of the application was measured with the methodology explained
previously. For the energy we got the following results:

3. 	 AUDIT

The impacts of Show/Hide Status bar and
Show Recent App are significant. Their
consumption ratio, as compared to the
Reference test, are respectively 2.4 and 1.9.

For shorter use cases, the test durations
were not long enough to get accurate
energy measures on this Nexus device,
which communicates its energy status
only every 30 seconds. However, we were
able to launch these tests and measure
another key metric, which is the CPU
consumption.

The relative impact of each feature in terms
of CPU consumption was the following :Illustration 5: Energy consumption of original

version

8© GREENSPECTOR

This first and simple step has allowed us:

- To compare the functional cases with respect to
the consumption of the platform when idle (which is
much more relevant than to try and assess absolute
figures);

- To compare the functional cases between them
(which makes it possible to prioritize the rest of the
work).

3.2.	 Profiling

An optimization work is not an exhaustive and planned
approach. We are in a constant search of balance
between the hoped-for gains, and the workload that
would be needed to obtain these gains.

In our case, the search for the big rocks had already begun: thanks to the measures carried
out, we were able to target the most consuming test cases.

Hence, when we started deeper profiling with expert tools (Android Systrace, Android
Traceview, HierarchyViewer…) we already knew where and how to use them. These tools
being very accurate on narrow points and their understanding being rather arduous, the
foremost step saved us a lot of time.

The energy measurement showed a hotspot on Show/Hide Status bar, so we began the
profiling by this feature. The Systrace tool gave us a list of methods with the time spent. We
analyzed and filtered this list to obtain the methods of system UI :

Hence, we used this good old 80/20 rule,
or what we like to call “looking for the big
rocks”: if your road is blocked by a rock, you
don’t have to mind the sand in your shoes
for the moment.

Illustration 6: CPU measure in
Greenspector

Illustration 7: extraction of Traceview information

9© GREENSPECTOR

The cross analysis of this list and a peek at the code allowed us to conclude that several
methods were called many times, and that 2 types of treatments were responsible of this
behavior : Refreshing the tiles (icon and text of the status bar), and movement tracking/
animations.
The refreshing of tiles is done each time an event occurs. Therefore, it generates some false
triggerings and thus a lot of treatments and redraws:

Between user actions (show mini, show all and hide) we see 4 peaks which correspond
to the triggering of the tiles redraws. We don’t know here if they are really needed but we
analyzed in the code and in the profiling that a lot of events with no real impact in the
viewing were firing these redraws.

The cost of one peak is not negligible because of treatments and redraws:

Moreover, this treatments appear also during the sliding of the status bar, and not only
during idle time.

For the animation, 2 big impacts were identified: treatments of movement (algorithm in
Threads) and redraws. The redraw has a cost because of the size of the layout - which is big.
The Hierarchy Viewer tool of Android permitted us to analyze the layout:

Illustration 8: Original Version - False triggering of redraw

Illustration 9: Cost of refreshing the tiles

10© GREENSPECTOR

There are 12 levels, which is a lot, and all tiles are complex:

Illustration 10: Layout architecture

Illustration 11: Signal view layer hierarchy

This layout has an
impact on energy
consumption, because
lots of treatments are
needed to update
and draw the layer. In
Systrace, we see that in
the timing:

The frame rate is 60
fps (every 16 ms). The
update and redraw of
tiles take more that
16ms. This triggers
warning in Systrace.
For the quick bar, the
layout has a lower
impact :

Illustration 12: Tiles drawing profilingy

Illustration 13: Quick bar Drawing profiling

11© GREENSPECTOR

3.3.	 Action Plan

Code analysis (detailed analysis)
The action plan followed the methodology by prioritizing the improvements with respect
to their expected gains. We took action on the code by tackling first the most consuming
methods:

This action plan could be summarized as
follows:

1 – Simplify the layout
The layout is complex (several levels,
usage of linear layout…). There are a lot of
treatments going on during every layout
redraw and measure, especially during
animation. Simplifying the layout would
allow for an important reduction of the
energy consumed.

2 - Reduce too many treatments and
redraws with event messages reception
Lots of events are fired during the opening
and closing of the status bar: wifi status
modification, radio… No gathering of
these events is done, so it creates a lot of
unnecessary treatment.

Moreover, the treatments fired with these
events are heavy (update and redraw
even if there is no change of state). It is
necessary to reduce the number of calls,
by reducing the frequency of treatment,
by making smarter event firing, and so
on.

3 - Reduce too many method calls and
redraws with MotionEvent event
Animations fire a lot of events and
treatments. The number of events is
too high and gives a too high level
of performance for the animations,
because produced at a rate too high for
the user’s perception. Decreasing the
events numbers will permit to do less
treatments and redraws. Also, the FPS is
rated at 60, which is too high for System
UI and can be decreased.

Illustration 14: Detail Action plan on code

12© GREENSPECTOR

4.1.	 Action 1 – Layout optimization

After discussion with the customer team, this best practice, although it was a big
improvement on energy, was too difficult to apply (need to redesign the layout, impact
on several parts of the code…) and we decided not to implement it. However, it can still be
applied later to improve the energy efficiency, or in new projects.

4.2.	 Action 2 - Reduction of the number of refresh events

Modification
For the original version, some problems on tiles update have been detected.
In fact, after every opening of the StatusBar, every tile was redrawn at least once even if
its value had not changed. Then, the WifiTile was redrawn once more, the CellularTile was
redrawn three times, the BluetoothTile was redrawn once and finally the BatteryTile was
redrawn three times at every battery level update.

As the methodology explained, we suppressed several refreshes which made the
application not fully functional, but which permitted to confirm the reduction in the
number of method calls.

To fix this problem, we looked at the code of each tiles that are updated too many times
like BatteryTile for example. In the original code, the method on BatteryLevelChanged was
called many times, even if the battery level was the same than for the last call. No check
was done on this for this method. Therefore, every call of this function implied a redraw
of the BatteryTile. So we added a condition at the first line of this method to check if the
data had really changed, and if not, just stop the treatment here because a redraw would
be useless.
For the other tiles, the problem was really similar. For example in the CellularTile, we added
a condition to stop the method setNoSims if the tile already knows if there is or not a SIM

4. 	 REFACTORING

4 - Analyze the impact of
BatteryMeterDrawable by removing it
The battery Meter is a heavy object and
its generation is called several times.
Removing it will permit us to understand
its energy bug and to know if it is
necessary to optimize it.

5 – Optimize the redraw (Global redraw
and poor caching of lazy update)
After the optimization of the number of
calls (cf. actions 2 and 4), the remaining
calls can be optimized. Indeed, the
items are cached but the update is not
optimized.

6 – Analyze a potential Bug
During the test runs, we detected a
potential bug: The energy and the
memory increased during the test period.
It is a potential memory / energy leak, to
be investigated.

7 – Optimize source code as per eco-
design code rules
After optimizing the main hotspots, focus
can switch to improving the code with
respect to code eco-design rules. These
eco-design rules are those included in
the GREENSPECTOR code scan tool for
Java/Android language.

13© GREENSPECTOR

card in the phone.
We called the version resulting from theses changes “version UpdateReduce”.

Profiling

The profiling with Systrace gave us the slices number and the time taken by showing the
QuickBar:

For the UpdateReduce version, we have: For the all show/Hide, the original:

And the UpdateReduce:

The results are as follows:

@Override
public void setIsAirplaneMode(IconState icon) {
	 // Greenspector-UpdateReduce: We have to check if the airplane mode has changed
	 if (mInfo.airplaneModeEnabled == icon.visible) return;
	 mInfo.airplaneModeEnabled = icon.visible;
	 refreshState(mInfo);
}

com.android.systemUI was not the first consumer anymore but it was the RenderThread,
which manages the rendering of the status bar during the animation.One other interesting
indirect result was the suppression of false triggering of refreshes (redraw and treatment
event if there is no visual modification):

14© GREENSPECTOR

One other interesting indirect result was the suppression of false triggering of refreshes
(redraw and treatment event if there is no visual modification):

Between actions (show mini, show all and hide) remember that we could see 4 peaks
which corresponded to the triggering of the refreshing of the tiles.

In the UpdateReduce version, there is no such peak anymore. If a real update of the tiles is
needed, refresh will be done (and a peak will happen).
We can confirm this with Systrace, on the methods which have an excluded time greater
that 0.5 ms:

Illustration 15: Original Version - False triggering in idle

Illustration 16: ReduceUpdate Version - No False triggering in idle

Illustration 17: Original Version - Top consuming methods

15© GREENSPECTOR

In yellow, we can see the method linked with the refresh event.

There are no more methods related to event. We reduced drastically the number of calls!

Measurement
The measurements are the following for the ShowHideStatusBar:

Illustration 18: UpdateReduce Version - Top consuming methods

Illustration 19: Number of calls of refresh methods

Illustration 20: Comparison with original for ShowHideStatusBar
(screenshot from GREENSPECTOR “Evolution” tab)

16© GREENSPECTOR

The gain in energy consumption is -10.75 μAh/s (-3,56 %). This
is good, but we were expeting better results, judging upon the
profiling aspects. One explanation is that the ShowHideStatusBar
energy test has been extended to include an idle period, which
lowers the mean consumption during the test. More tests could be
conducted on other Android devices with more accurate energy
probes, this flavor of the Nexus showing its limitations here.

When we checked the gain of all the tests, we had:

We had some gains in CPU and Memory. We decreased the RAM consumption by 2 MB.
However it is interesting to note that we also slightly decreased the pressure on the CPU.

4.3.	 Action 3 – Animation and redraw optimization

Modification
To reduce the number of animation treatments, one simple modification was to reduce
the amount of input events. For that, in dispatchTouchEvent in com.android.systemui.
statusbar.phone.StatusBarWindowView we took one action to delete one event out of 3.
The result is not visible for the user. If we wanted to keep the same performance (and not
to loose events), then the same gain (and even more) could be obtained by optimizing the
treatment of animations and the layout.
We added the modification to the modifications of Action 2 (incremental modification).

Profiling
The Systrace analysis of the optimized version gives the following metrics for Showing the
status bar:

The metrics for original version was:
The result :

-10.75 μAh/s

Illustration 21: Global gain of all test for CPU and Memory

Illustration 22: Gain in term of method call

17© GREENSPECTOR

The global gain for the test ShowHideStatus bar is the following:
We got a gain of -28 μAh/s (- 9.3%) !

We also reduced the pressure on the memory management, as shown by the 2 graphs
below. On the original version, the garbage collector runs every 1 minute and 20 seconds.
On the optimized version, it runs every 2 minutes 30. There are less objects to destroy, so
the GC is not called as much as before.

Illustration 23: ShowHide Status bar improvement between original version (column 1) and
optimized version (col 2), absolute difference (col 3) and relative difference (col 4) (screenshot from

GREENSPECTOR interface)

We got a gain of
-28 μAh/s (- 9.3%)

The garbage
collector runs
every 2mn30

Reduction of
the memory
management
pressure

llustration 24: RAM / initial
version

Illustration 25: RAM / Op-
timized version with the
ShowHideStatusBar test

18© GREENSPECTOR

- When the status bar is expanded
and the user locks the screen,
it seems that the listener which
permits to update the tiles stays
open. This creates unnecessary
treatments and Redraws which
happen even though the screen
is off.

4.7.	 Action 7 – Improve the code as per code eco-design rules

During the audit, we lacked the necessary time to conduct this action. We agreed with the
Customer team that this one will be done by its development teams. Indeed, the use of
GREENSPECTOR tools (including the Eclipse plug-in and Android Studio plug-in) allows
any developer to easily scan their code and apply the “green” rules.

Illustration 26: Evolution of reference energy consumption
for original version (showing a leak)

increases. We had identified
this during the measurement
step, and we had adapted our
protocol of measurement not
to suffer from that. Let it live,
and the idle consumption goes
from 85μAh/s to 150μAh/s!

4.4.	 Action 4 - BatteryMeterDrawable optimization

After the action 2, we had reduced and suppressed a lot of calls. The BatteryMeterDrawable
object was still heavy, but there were no more calls on Show/Hide of status bar. This action
was deemed as not relevant for the sort duration of the audit.

4.5.	 Action 5 – Optimize the redraw (Global redraw and poor caching of lazy
update)

During the audit, we did not have enough time to work on this action. However, decreasing
the triggering of refreshes had made this action less important (although still necessary).

4.6.	 Action 6 – Analysis of Energy leak bug

We identified two potentials bugs:
- There is a memory leak. Even if we see that the garbage collector does its job, the memory
is continuously increasing from test run to test run. The energy of all tests also continuously

Note: The scanning had shown that no “high priority” green rules had been infringed.
Green rules are interesting with a mid and long term vision. Like maintainability
and other best practices which improve the code quality, it will improve the energy
consumption of software as coding goes along.

19© GREENSPECTOR

5.1.	 Performance is not enough.
Watch your efficiency.

Mobile hardware has become more and
more powerful. The smartphone used
during this audit boasted aa many as 8
CPUs and one GPU. Indeed, the application
uses all the available CPUs and there is no
performance problem. This meets Wirth's
Law : “Software is getting slower more
rapidly than hardware becomes faster.”
( https://en.wikipedia.org/wiki/Wirth's_law).

Hardware provides more and more power
and resources to the software, hence the
software use all the resources. The only
limitations for the software are defined
by two factors: the user’s perception of
performance (aka speed), and t he available
hardware resources.

Getting back to this audit, we saw that the
performance level of the SystemUI app was
quite good. But this was done at the cost
of using all the available resources without
limitation, leading to an app consuming
way more battery than it could, or should.
We showed that the same performance
level may be achieved with a lower
consumption of energy, thus granting the
user a longer battery life.

One of our usual proposals in order to
reduce the consumption of resources is
to limit it with a budget. Therefore we
introduce a third limitation factor, which
will permit to better control the behavior of
the software. This concept is already applied
in the performance domain with the RAIL
model. But the current performance
models need to be improved. For example,
there is this reflexion on the RAIL model
proposed by Paul Irish and Paul Lewis:
Add B (for battery) and an M (for memory),
turning into BLAIMR, PRIMAL. Just as we
have a performance budget, we need an
energy consumption budget. Set your own

5. 	 CONCLUSIONS

target, like “this software should not double
the discharge rate of the battery”, or “this
software should not increases by more
than 10% the discharge rate of the battery
when in Idle mode…”, and so on.

Timing or Speed performance is not the
only solution to improve the software
efficiency. This leads to over-consuming
software and to empty batteries.
Performance models need to be improved
and to integrate energy and resources
consumptions.

5.2.	 Measure, Measure, Measure

We managed to do it because we had both:
- A good method: look for the big stones,
proceed by elimination, and above all
MEA-SU-RE. It’s by measurement that
knowledge arrives, and by measurement
that progress is evaluated. Once the big
stones are identified, you spend your time
and your expertise much more efficiently.
- A good tool: since you have to measure,
let it be easy to do, and let the findings
be relevant. We have shown that
GREENSPECTOR’s API offered a nice
versatility for in-house Android developers,
and that GREENSPECTOR’s interface
allowed to easily follow the findings and
progresses.

Our goal was to reduce the power
consumption of SystemUI, an
Android core application. We have
succeeded in a very short time frame,
and above all we have shown that it
was possible to go way further.

20© GREENSPECTOR

Still some work to do
The SystemUI app can still be improved in many ways. Event programming
is overused and has some drawbacks: no clear management of the
impact of event triggering, redraws happening way too often… The
performance of the UI is also too high: maintaining a 60 FPS is over-
quality.
We managed to improve the energy consumption by 2 quick actions.
The memory was improved also. But the impact on the system is still
too high. An impact less that 2 times the reference consumption would
be more acceptable (See? This is an energy consumption budget!).
Improvements can be continued in order to reach this goal...

+33 (0) 9 51 44 55 79

contact@greenspector.com

Want to learn more about software
ecodesign ?

www.greenspector.com

