°
9
oy

“# GREENSPECTOR

IMPROVING THE ENERGY EFFICIENCY
AND THE PERFORMANCE OF AN
ANDROID 7 CORE APPLICATION

g
o

LIRS

DDDDDDDD

Bt

I{B
y in o
C o Sl
< T =

i"ﬂ-u—__,r Lt

ey \:}

v]

Author: Olivier PHILIPPOT, GREENSPECTOR
Date: Jan 10th, 2017

\l/

THANKS FOR
DOWNLOADING!'!

Be sure to check out our others resources about
software ecodesign :

YES, | WANT TO LEARN MORE'!

GREENSPECTOR

+33 (0) 9 51 44 55 79 ‘ i,
)’::::.

o
.

contact@greenspector.com

https://greenspector.com/blog.html

EXECUTIVE SUMMARY

The GREENSPECTOR team has been asked by a customer to help in
optimizing an Android core application. The final goal was to reduce the
energy consumption of the app, or to improve its performance, or both.

The application audited was the AOSP 7.0
core application “System Ul” running on a
Nexus smartphone. The project lasted 2
weeks in November 2016.

We first conducted a set of measures on
the smartphone, using GREENSPECTOR
metering features and a dedicated
GREENSPECTOR energy probe. This
showed that System Ul had a substantial
impact on the device, especially through
Status Bar and Recent Apps features.
Indeed, the energy consumption impact
was measured to be between 2.2 and 2.9
times higher than the reference scenario.

@

“Z

During the audit, several issues were
identified which correction could
potentially help to decrease this impact:

- A high number of triggered events,
which create unnecessary treatments
and redraws. These treatments impact
the platform resources even when in idle
mode.

-Ahighfrequency (and thusimpact)ofthe
animation and of the movement tracking
feature. The animation performance is
designed too high for the user to perceive
its quality.

- A heavy layout, which creates a lot of
consuming treatments and redraws
enforced during animations.

In the second part of the audit, we
modified the source code of System Ul
to apply some of these changes. We were
able to obtain significant gains:

- Removal of unnecessary triggerings of
redraws.

- Reduction from 250 ms to 150 ms of CPU
treatments when showing the Status Bar,
- Reduction of the number of calls to
several methods (up to 100 calls during
sliding actions),

- Reduction of energy consumed during

Show/Hide Status bar: - 28 -pAh/s (- 9%).

The goal of this audit, which
was to improve the application

as per energy efficiency and
performance standards, has been
reached in a short time frame.

We spent 3 mandays on this code
refactoring task, including some initial
time necessary to understand the code.
The overall audit duration was 9 days for 2
consultants. This is very positive, since we
estimate that the gains could be more
important with a better knowledge of
the source code, and some more time to
apply the corrections to the application.

We demonstrated with this case study
that, provided you use the right method
- which involves energy consumption
measurement - you may try and optimize
any application, beitapartofthe Android
core. Our approach based on software
eco-design principles allowed us to
identify areas of progress in a short time
frame. The implementation of the key
recommendations will permit not only
a reduction of the energy consumption
but also an increase of the hardware
lifespan.

© CREENSPECTOR 3

1. AuDIT DESCRIPTION

11. System description

The chosen platform was :
- Device: a Nexus Smartphone (Model: confidential)
- OS: Android 7.0 (Build AOSP on Angler - NRD9OM)

1.2. Application

The application under test was a core Android application:
- System Ul
- Version: from AOSP repository (1.0.3)

1.3. Use cases

The chosen use cases were features frequently used by the users:

- Open the status bar in minimal mode (use case hame: ShowMiniStatusBar)
- Open the status bar entirely (ShowAllIStatusBar)

- Hide the status bar (HideStatusBar)

- Show / Hide all the status Bar (ShowHideStatusBar)

- Open Recent Apps (OpenRecentApps)

- Clear All Recent Apps (ClearAllRecentApps)

- Show/ Hide Recent Apps (ShowHideRecentApps)

Another use case was used to measure the platform consumption in idle mode:
Idle Mode (Reference)

All these test cases were automated using UlAutomator.

“3% GREENSPECTOR

GREENSPECTOR WHAT'S NEW ? . CONTACT

TOUT EFFACER

Illustration 1: Quick bar Illustration 2: Show recent app Illustration 3: All status bar

© CREENSPECTOR 4

2 e METHODOLOGY & TEST BENCH SETTING

2.1. Methodology
General description of the methodology

For this audit, we used a classical top-down approach. We first launched a set of measures
to identify the most consuming features, then we went deeper into the analysis where there
were “hotspots” of resources consumption. An optimization phase was then conducted,
followed by the assessment of each progress done.

In the end, the hotspots having been corrected, the developers could switch to correcting
their source code with respect to an eco-design set of rules.

Drawing 1 : Synthetic methodology
YR

Features Identification Profilin Action plan
measurement of «<Hotspots» 9 established

Improving the
source code Progress
with green measurement
rules

Optimization

Features measurement

The energy measurement allowed us to identify which features consume the most energy.
Without that identification, we couldn’t focus the correction effort, and this could lead to
working on some parts which have no or very little impact on energy consumption.
We focused on the following tests because they were designed for energy measurement
(duration of tests > 1 minute):

Show / Hide all the status Bar (ShowHideStatusBar)

Show/ Hide Recent App (ShowHideRecentApps)

Idle Mode (Reference)

Hotspot profiling

When a “hotspot” had been detected (which means that a highly consuming test had
been identified), we then used classical profiling tools to get a better understanding about
the underlying behaviour. In parallel we used GREENSPECTOR Code Analysis feature, to
determineif someimportant code eco-design rules could be infringed and thus participate
in causing the hotspot.

© CREENSPECTOR 5

Action plan, optimization and measurement

When the auditing part was done, we set an action plan which aimed at reducing the
energy consumption. The plan focused first on improving the “hotspots”, starting by the
hotspot with the highest Impact ratio.

After each correction, we performed another profiling test, in order to check if the hotspot
had been corrected or if it was still present. When a hotspot was suppressed, the next
hotspot in the list became the next priority.

Please note that, given the very short time frame of this audit, the hotspot optimizations
were applied as “quick and dirty modifications”, even if not fully functional, in order to see
if such a modification was interesting. “Cleaner” modifications could easily be performed
with the same principles, given some more development time.

We applied the modifications as increments, which allowed to check the gain of each
improvement.

Source code Analysis

After the removal of the main hotspots, we focused on the correction of the source code,
using the code eco-design rules for Android.

2.2. Testbench description

GREENSPECTOR tools

The test bench was composed of the
CREENSPECTOR server installed on
our customers premises, and the
Android probe developed for this Nexus
device and this Android version. These
tools are available to all customers of
GREENSPECTOR.

Illustration 4 : Greenspector dashboard

© CREENSPECTOR 6

Testing environment

We used the following tools:
Greenspector Server: to conduct the audit, gather and analyze the data,
Greenspector Android Meter API: to link the smartphone probe to the test
case run,
Android tools: Traceview, Systrace and Layout Hierarchy,

Git: to work on the refactory steps,
The testing protocol was the following:

Charge the smartphone between 95% and 100% (to have the same energy
behavior)

Reboot the smartphone (to put it in a stable state)

Unplug the USB cable or any other energy supply

Run all the tests (always in the same order)

Re-run the protocol x times to have stable measures.

3. AUDIT

3.1. Feature Measurement and identification of hotspots

We launched test runs for each of the functional cases that we had selected. As mentioned,
prior to running the functional test cases, we ran a Reference (or “idle”) test case to establish
the reference consumption for our platform.

The initial version of the application was measured with the methodology explained
previously. For the energy we got the following results:

The impacts of Show/Hide Status bar and
Show Recent App are significant. Their
consumption ratio, as compared to the
Reference test, are respectively 2.4 and 1.9.

Show/Hide Status Bar

For shorter use cases, the test durations
were not long enough to get accurate
energy measures on this Nexus device,
which communicates its energy status
only every 30 seconds. However, we were
able to launch these tests and measure
another key metric, which is the CPU
0 S0 100 150 200 250 300 350 Consumption.

Show Recent App

Reference

W Consumption (uARs) . . .
Therelativeimpact ofeach featureinterms

Illustration 5: Energy consumption of original of CPU consumption was the following :
version

© CREENSPECTOR 7

ShowHideStatusBar_Energy

This first and simple step has allowed us:

ClearRecentApps - To compare the functional cases with respect to
the consumption of the platform when idle (which is

GoBackToMiniStatusBar much more relevant than to try and assess absolute
figures);

ShowaAllStatusBa .
Lol T - To compare the functional cases between them

(which makes it possible to prioritize the rest of the
ShowMimiStatusBar work).

ShowRecentApps 3.2. Profiling

Anoptimization workis notan exhaustive and planned
approach. We are in a constant search of balance
between the hoped-for gains, and the workload that
would be needed to obtain these gains.

ShowRecentApps_Energy
HideMiniStatusBar
UseFlashLight

Hence, we used this good old 80/20 rule,
or what we like to call “looking for the big

ldleWithAllStatusBar

rocks™ if your road is blocked by a rock, you
don’t have to mind the sand in your shoes
for the moment.

Reference_Energy

Illustration 6: CPU measure in
Greenspector

In our case, the search for the big rocks had already begun: thanks to the measures carried
out, we were able to target the most consuming test cases.

Hence, when we started deeper profiling with expert tools (Android Systrace, Android
Traceview, HierarchyViewer..) we already knew where and how to use them. These tools
being very accurate on narrow points and their understanding being rather arduous, the
foremost step saved us a lot of time.

The energy measurement showed a hotspot on Show/Hide Status bar, so we began the
profiling by this feature. The Systrace tool gave us a list of methods with the time spent. We
analyzed and filtered this list to obtain the methods of system Ul :

Included
Excluded Time

Method Time (ns) (ns) Calls

com.android.systemui.gs. Touc hAnimatorSFloatkey frame Set. interpolate T007 177020 1326
com.android.systemui.gs. Touc hAnimator setP osition 5205 223740 349
com.android.systemui.gs. TouchAnimatorskey frameSet. setvValue 4416 181553 1326
com.android.systemui.statusbar stack. MotificationStack ScrollLayout. getMNot Gone Child Count 1910 3316 100
com.android.systemui.gs. QS TilesState.copyTo 1683 11725 29
com.android.systemui.gs. QSContai ner.setQsExpansion 068 266442 32
com.android.systemui.statusbar stack. MotificationStack ScrollLayout. getFirstChild MotGone 907 1584 78
com.android.systemui. BatteryMeter Drawable. <init> B37 15BE6 4
com.android_systemui.statusbar phone. QuickStatusBarHeader updateVisibilities 701 75304 29
com.android.systemui.gs.tiles. CellularTile_handleUpdare Stare 664 B6BE9 12
com.android.systemui.statusbar stack. MotificationStack ScrollLayout. getlay outhinHei ght 629 2714 78

Illustration 7: extraction of Traceview information

© CREENSPECTOR 8

The cross analysis of this list and a peek at the code allowed us to conclude that several
methods were called many times, and that 2 types of treatments were responsible of this
behavior : Refreshing the tiles (icon and text of the status bar), and movement tracking/
animations.

The refreshing of tiles is done each time an event occurs. Therefore, it generates some false
triggerings and thus a lot of treatments and redraws:

(<l

Android System Trace
[5s, | LK

||') i inl

Illustration 8: Original Version - False triggering of redraw

25, IUS.

Interactions
Alerts

» Kemel
CPU 0: ||
CPU 1:

v SurfaceFlinner fnid JA9Y

Between user actions (show mini, show all and hide) we see 4 peaks which correspond
to the triggering of the tiles redraws. We don’t know here if they are really needed but we
analyzed in the code and in the profiling that a lot of events with no real impact in the
viewing were firing these redraws.

The cost of one peak is not negligible because of treatments and redraws:

671 items selected: Cpu Slices (671)

Name ¥ Wall Duration ¥ Occurrences v
ndroid. systemui 48941 ms 27
RenderThread 32890 ms 20
surfaceflinger 10378 ms B

0 END rae 10

i aa

Illustration 9: Cost of refreshing the tiles

Moreover, this treatments appear also during the sliding of the status bar, and not only
during idle time.

For the animation, 2 big impacts were identified: treatments of movement (algorithm in

Threads) and redraws. The redraw has a cost because of the size of the layout - which is big.
The Hierarchy Viewer tool of Android permitted us to analyze the layout:

© CREENSPECTOR S)

[]
il En

NE §50 § DEREEEEEEER
63 @EEm

i
a1
i@ BB 00

]
([[]]

i
GES B8 0 0OR OoEE
]

@0 060 0§ DENNEEEEEEON

G h NN R ER B BB B

[
[|

Illustration 10: Layout architecture

There are 12 levels, which is a lot, and all tiles are complex:

AR AR

10 vieve:
Mesure: 0150 ms
Layout: 0127 ms
Draw: 1.37% ms

This layout has an
impact on energy
consumption, because
lots of treatments are
needed to update
and draw the layer. In
Systrace, we see that in |
the timing:

f_L ol

Illustration 12: Tiles drawing profilingy

|3336ms. |3338 ms |3320 ms |3322 ms |3324 ms.

16.708 ms

|3376 ms. |3338 ms. |3330 ms |3332

The frame rate is 60
fps (every 16 ms). The
update and redraw of
tiles take more that
1ems. This triggers
warning in Systrace.

For the quick bar, the
layout has a lower
impact :

Illustration 13: Quick bar Drawing profiling

© CREENSPECTOR

© CREENSPECTOR

3.3. Action Plan

Code analysis (detailed analysis)

The action plan followed the methodology by prioritizing the improvements with respect
to their expected gains. We took action on the code by tackling first the most consuming

methods:

code

Method Best praciices
Optimize the layout (=10 level). Usane of relativelayout. Will increase several method

Layout (all xml files)

com.andmoid. systemuil.gs. TouchAmmator
com.andmid. systemui.gs TouchAnimator
com.andmoid. systemuil.gs. TouchAmmator
com.andmid systemui gs QS Tile$State copyTo

performance.

Optimize inner class access

Reduce Call number (>1000).
Don't use float in interpolation
Optimize inner class access

Don't use Objects.equals : Overhead of call and test to null retum a=="b || (a!= null &&

com.android. systemui.gs. QS Tile$State.copyTo
com.andmid. systemui.gs. QS Tile$State.copyTo
com.android. systemui.gs. QS Tile$State.copyTo

com.andmid. systemui.gs tiles WifiTile handleUpdateState
com.andmid. systemui.gs tiles WifiTile handleUpdateState
com.andmid. systemuil.gs tiles WifiTile handleUpdateState
com.andmid. systemui.gs tiles WifiTile handleUpdateState

com.andmid. systemui.gs tiles . CellularTile. handleUpdateState
com.andmid. systemui gs tiles CellularTile. handleUpdateState
com.andmid. systemui.gs tiles . CellularTile. handleUpdateState
com.andmid. systemui.gs tiles . CellularTile. handleUpdateState

a.equals(pl)])
Don't make copy if variable donmt change

Reduce call number (>10). Call especially by handleRefreshState.

Reduce call number (~5). Applicable to all Handle, especially Wifi and mdio which change
Don't recreate state but only update (Append are for example done f no changement)
Don't use reflexon : Button.class.getMame(). Cache 7

Cache the resource call (getstnng...)

Reduce call number (~5). Applicable to all Handle, especially Wifi and mdio which change
Don't recreate state but only update (Append are for example done if no changement)
Don't use reflexion : Button.class.getMame(). Cache 7

Cache the resource call (getstnng...)

com.andmid. systemui statushar stack. MotificationStackScroll Layout.geth Optimize the layout if possible
com.andmid. systemui statusbar stack. Motification Stac kScroll Layout.geth Reduce the call number (Common optimization with other like setStackHeight)

com.android systemui Battery MeterDrawable. <init=>
com.andmid. systemui Battery MeterDrawable. <init=
com.andmid. systemui. Battery MeterDrawable. <init=
com.andmid. systemui Battery MeterDrawable. <init=
com.andmid. systemui. Battery MeterDrawable. <init=
com.android systemui Battery MeterDrawable. <init=>
com.antdmid. systemui statushar Signal Clusterview apphy

Remove the icon to analyze the energy impact

Analyze the bug of Init call 2 times in 10ms.

Think to cache the icon and not to regenerate every time
Bitshift (Greenspector rule)

Cache the resource call (getstnng...)

Cache typeface

Optimize Layout

Run after each indicator change, so lot of tmitment if one indicator only change. As all

com.andmid. systemui statushar Signal Clustenview apphy
com.andmid. systemui statusbar Signal Clusterview apply
com.antdmid. systemui s QSTile$H. handleMes sane
com.andmid. systemui gs QSTile$H. handleMes sange

This action plan could be summarized as
follows:

1- Simplify the layout

The layout is complex (several levels,
usage of linear layout..). There are a lot of
treatments going on during every layout
redraw and measure, especially during
animation. Simplifying the layout would
allow for an important reduction of the
energy consumed.

2 - Reduce too many treatments and
redraws with event messages reception
Lots of events are fired during the opening
and closing of the status bar: wifi status
modification, radio.. No gathering of
these events is done, so it creates a lot of
unnecessary treatment.

method, to many call (need to reduce)

Optimize setContentDescnption (70% of the time consume)
Optimize Call

Use Switch case instead of if or organize if by probability

Illustration 14: Detail Action plan on code

Moreover, the treatments fired with these
events are heavy (update and redraw
even if there is no change of state). It is
necessary to reduce the number of calls,
by reducing the frequency of treatment,
by making smarter event firing, and so
on.

3 - Reduce too many method calls and
redraws with MotionEvent event
Animations fire a lot of events and
treatments. The number of events is
too high and gives a too high level
of performance for the animations,
because produced at a rate too high for
the user's perception. Decreasing the
events numbers will permit to do less
treatments and redraws. Also, the FPS is
rated at 60, which is too high for System
Ul and can be decreased.

4 - Analyze the impact of
BatteryMeterDrawable by removing it
The battery Meter is a heavy object and
its generation is called several times.
Removing it will permit us to understand
its energy bug and to know if it is
necessary to optimize it.

5 - Optimize the redraw (Global redraw
and poor caching of lazy update)

After the optimization of the number of
calls (cf. actions 2 and 4), the remaining
calls can be optimized. Indeed, the
items are cached but the update is not

6 - Analyze a potential Bug

During the test runs, we detected a
potential bug: The energy and the
memory increased during the test period.
It is a potential memory / energy leak, to
be investigated.

7 - Optimize source code as per eco-
design code rules

After optimizing the main hotspots, focus
can switch to improving the code with
respect to code eco-design rules. These
eco-design rules are those included in
the GREENSPECTOR code scan tool for
Java/Android language.

optimized.

4. REFACTORING

41. Action1-Layout optimization

After discussion with the customer team, this best practice, although it was a big
improvement on energy, was too difficult to apply (need to redesign the layout, impact
on several parts of the code...) and we decided not to implement it. However, it can still be
applied later to improve the energy efficiency, or in new projects.

4.2. Action 2 - Reduction of the number of refresh events

Modification

For the original version, some problems on tiles update have been detected.

In fact, after every opening of the StatusBar, every tile was redrawn at least once even if
its value had not changed. Then, the WifiTile was redrawn once more, the CellularTile was
redrawn three times, the BluetoothTile was redrawn once and finally the BatteryTile was
redrawn three times at every battery level update.

As the methodology explained, we suppressed several refreshes which made the
application not fully functional, but which permitted to confirm the reduction in the
number of method calls.

To fix this problem, we looked at the code of each tiles that are updated too many times
like BatteryTile for example. In the original code, the method on BatteryLevelChanged was
called many times, even if the battery level was the same than for the last call. No check
was done on this for this method. Therefore, every call of this function implied a redraw
of the BatteryTile. So we added a condition at the first line of this method to check if the
data had really changed, and if not, just stop the treatment here because a redraw would
be useless.

For the other tiles, the problem was really similar. For example in the CellularTile, we added
a condition to stop the method setNoSims if the tile already knows if there is or not a SIM

© CREENSPECTOR 12

@Override
public void setlsAirplaneMode(lconState icon) {
/| Greenspector-UpdateReduce: We have to check if the airplane mode has changed
if (minfo.airplaneModeEnabled == icon.visible) return;
minfo.airplaneModeEnabled = icon.visible;
refreshState(minfo);

card in the phone.
We called the version resulting from theses changes “version UpdateReduce”.

Profiling

The profiling with Systrace gave us the slices number and the time taken by showing the

QuickBar:
21237 items selected: Cpu Slices (21237)
Name ¥ Wall Duration ¥ Occurrences v
ndroid systemui 739.445ms 773
RenderThread 645.055 ms 799
surfaceflinger 454,406 ms 465
mrss fhi) 16 NOR ms 498

For the UpdateReduce version, we have: For the all show/Hide, the original:

21237 items selected: Cpu Slices (21237)

Name V Wall Duration ¥ Occurrences V
ndroid.systemui 739445 ms 773
RenderThread 645.055 ms 799
surfaceflinger 454,406 ms 465
mdss fhi) 1RRNOA m= 408

And the UpdateReduce:

14541 items selected: Cpu Slices (14541)

Name ¥ Wall Duration ¥ Occurrences v
RenderThread 565.182 ms 469
ndroid.systemui 432.857 ms 484
surfaceflinger 278.246 ms 267

raren fhi AN 098 me AE1

The results are as follows:

TestName Metrics Original Optimized Gain
) Number of Slice 6667 5812 12.8%
ShowMinStatudgar com.android.systemUl timing (ms) 264 168 36.4%
) Number of Slice 21237 14541 31.5%
Showtide StatudBar com.android. systemUl timing (ms) 739 432 41.5%

com.android.systemUl was not the first consumer anymore but it was the RenderThread,
which manages the rendering of the status bar during the animation.One other interesting
indirect result was the suppression of false triggering of refreshes (redraw and treatment
event if there is no visual modification):

© CREENSPECTOR 13

One other interesting indirect result was the suppression of false triggering of refreshes
(redraw and treatment event if there is no visual modification):

™ Androdd System Trace

Interactions
Alerts

» Kemel
CPUG: |
CPU 1: |
Lrua: |
CPU 3:

CPU 4:

CPU &:

CPU &:

CPUT:

W SiirfasaChweor fnid 2004

Ilustration 15: Original Version - False triggering in idle

Between actions (show mini, show all and hide) remember that we could see 4 peaks
which corresponded to the triggering of the refreshing of the tiles.

Android System Trace Wiew Optiors. v

Interactions

Alerts

» Kisral

CPUO: |
CPU 1

CPU2 |
CPU 3

CPU 4

CPUE:

CPU B:

CPUT:

Illustration 16: ReduceUpdate Version - No False triggering in idle

In the UpdateReduce version, there is no such peak anymore. If a real update of the tiles is
needed, refresh will be done (and a peak will happen).
We can confirm this with Systrace, on the methods which have an excluded time greater

that 0.5 ms:
Included
Excluded Time

Method Time (ns) (ns) Calls

com.android.systemui.gs. TouchAnimator$FloatKey frameSet.interpolate 7007 177020 1326
com.android.systemui.gs. TouchAnimator.setPosition 5205 223740 349
com.android.systemui.gs. TouchAnimator SKeyframeSet. sefValue A416 181553 1326
com.android.systemui.statusbar.stack. Notification Stack ScrollLayout. getNotGoneChildCount 1910 3316 100
com.android.systemui.gs.QSTileSState.copyTo 1683 11725 29
com.android.systemui.gs.QSContainer.s etQsExpansion 968 266442 32
com.android.systemui.statusbar.stack Maotification StackScrollLayout. getFirstChildiotGone 907 1584 78
com.android.systemui.BatteryMeterDrawable. <init> 837 15886 4
com.android.systemui.statusbar.phone.QuickStatusBarHeader.update Visibilities 701 75304 29
com.android.systemui.gs.tiles. CellularTile.handleUpdateState 664 66B69 12
com.android.systemui.statusbar.stack. Natification StackScrollLayout. getLayoutMinHeight 629 2714 78
com.android.systemui.BatteryMeterDrawable. draw 626 4850 7
com.android.systemui.statusbar.phone.QuickStatusBarHeader. setExpansion 621 61712 32
com.android.systemui.gs. Touc hAnimatorSBuilder.build 616 2134 35
com.android.systemui.gs.QSTile$H.handleMessage 606 312717 34
com.android.systemui.gs.tiles. WifiTile.handleUpdateState 586 43341 8
com.android.systemui.gs. QSAnimator.getRelativeP ositionint 587 B66 72
com.android.systemui.gs.QSContainer.updateQsState 584 151425 29
com.android.systemui.statusbar.phone.Natification PanelView getMaxPanelHeight 564 3685 35
com.android.systemui.statusbar.stack. StackScroll Algorithm. initAlgon thmState 553 1686 13
com.android.systemui.statusbar.stack. Notification Stack ScrollLayout. setStackHeight 549 32713 44
com.android.systemui.gs.QSAnimator.setPosition 538 102547 32
com.android.systemui.gs. QSAnimator.updateAnimators 504 28B13 1

Illustration 17: Original Version - Top consuming methods

© CREENSPECTOR 14

In yellow, we can see the method linked with the refresh event.

Inciuded
Excluded Time

Method Time (ns) (ns) Calls

corn.android systermui.gs. Toue hAnimatorsFloatk eyframeSet.interpolate G868 180437 1375
com.android. systemui.gs. TouchAnimator. s etPosition 5181 221681 349
com.android.systemui.gs. TouchAnimatorsKeyframeSet. set\alue 4461 184898 1375
com.android.systermui.statusbar stack. Notificati onStackScrollLay out. getNotGoneChildCount 2113 3687 80
com.android.systermui.statusbar ExpandableNot ificati onRowe. getIntrinsic Height 1235 3282 127
com.android.systermui.gs. Q5Container setQsEx pansion 1101 273280 33
corm.android. systemui. statusbar. Expandablehot ificati onRow.isEx panded 1015 2398 264
corm.android. systemuil. statusbar. Signal Clusterieve apphy 863 30660 10
com.android. systemui. statusbar stack. NotificationStackScrollLay out. updateViewShadows 863 4141 156
com.android. systemui. statusbar stack. StackSerollAlgorithm.initAlgorithmState 809 3245 16
com.android. systermul.statusbar stack. StackSerollAlgonthm.updatePositions ForState 793 4827 156
com.android.systemui. statusbar. stack. StackScrollState.apply State 793 15383 B5
com.android. systemul.statusbar. phone. QuickStatusB arHeader. setExpansion 711 73hz22 33
com.android. systemuil. statusbar. stack. Notificati onStackScrollLay out. updateContentHeight 701 2831 16
corm.android.systermui. statusbar stack. StackScrollState. get ViewS tateF orview 679 8261 200
corn.android. systermui.gs. QSAnimat or.get RelativePositionlnt 662 981 96
com.android. systermul.statusbar stack. Notificati onStackScrollLay out.updateB ackgroundB ounds 544 3160 156
com.android. systermui.statusbar stack. NotificationStackScrollLay out.getLayoutMin Height 506 3645 73
corm.android. systemui.gs. QSAnimat or.set Position 588 187069 34
com.android. systermul. statusbar. stack. StackScrollState.apply 581 18959 16
com.android.systemul. statusbar. stack. StackScrollState. res etViewState 565 4039 65
corn.android systermui.gs. QSAnimat or.updateAnimators b6l 28055 1
corn.android. systermui. statusbar policy WifiSignal Controller. notifyListeners 535 6890 4
com.android. systermui. statusbar stack. NotificationStackScrollLay out.getFirst ChildM otGon e 529 800 73
com.android.systermui.statusbar stack. StackSe rollAlgorithm. updateClipping 526 2213 16
com.android.systermui.statusbar phone. NotificationPaneMevw getHeade rTrans lation 513 2876 33

Illustration 18: UpdateReduce Version - Top consuming methods
There are no more methods related to event. We reduced drastically the number of calls!
Number of Calls

Number of Calls — UpdateReduce
— Qriginal Version Version

com.android. systemui.qs.QSTile$State.copyTo 29 3
com.android. systemui. BatteryMeterDrawable. <init= 4 0
com.android. systemui.gs . tiles. CellularTile. handleUpdate State 12 3
com.android. systemui. BatteryMeterDrawable. draw 7 4
com.android. systemui.gs.QSTile$H. handleMes sage 34 12

Illustration 19: Number of calls of refresh methods
Measurement
The measurements are the following for the ShowHideStatusBar:
ShowHideStatusBar_Energy
Platform CPU 16.71 %

Platform Discharge 59.36 mAh 9.32 mAh

Platform Discharge per second 301.96 pAhfs 291.21 pAh/s

Process CPU 0 % 0%
Process Data 0B 0B
Network Packets 0 0

Process Memory 132.84 MB 131.41 MB

Illustration 20: Comparison with original for ShowHideStatusBar
(screenshot from GREENSPECTOR “Evolution” tab)

© CREENSPECTOR

15

The gain in energy consumption is -10.75 pAh/s (-3,56 %). This
is good, but we were expeting better results, judging upon the
profiling aspects. One explanation is that the ShowHideStatusBar
energy test has been extended to include an idle period, which
lowers the mean consumption during the test. More tests could be
conducted on other Android devices with more accurate energy
probes, this flavor of the Nexus showing its limitations here.

-10.75 pAh/s

When we checked the gain of all the tests, we had:

Platform CPU
Process Data 0B 0B

120.74 MB 118.38 MB

Process Memory

Illustration 21: Global gain of all test for CPU and Memory

We had some gains in CPU and Memory. We decreased the RAM consumption by 2 MB.
However it is interesting to note that we also slightly decreased the pressure on the CPU.

4.3. Action 3 - Animation and redraw optimization

Modification

To reduce the number of animation treatments, one simple modification was to reduce
the amount of input events. For that, in dispatchTouchEvent in com.android.systemui.
statusbar.phone.StatusBarwWindowView we took one action to delete one event out of 3.
The result is not visible for the user. If we wanted to keep the same performance (and not
to loose events), then the same gain (and even more) could be obtained by optimizing the
treatment of animations and the layout.

We added the modification to the modifications of Action 2 (incremental modification).

Profiling
The Systrace analysis of the optimized version gives the following metrics for Showing the
status bar:

6667 items selected: Cpu Slices (6667)
Name ¥ Wall Duration ¥

Occurrences V

ndroid. systemui

surfaceflinger
RenderThread

264.650 ms 330
157.982 ms 150
157.793 ms 250

The metrics for original version was:

The result :
Refresh Gain Of Animation Gain Of
TestMName Metrics Original Reduce Action 2 Optimization Action 3 Total Gain
. Nurmber of Slice 6EET Balz 12 8% 3150 45,00 52. 8%
ShowMinStatdBar o) - niraid systemU timing (ms) 264 168 36.4% o 41 1% 62.5%
. Murmber of Slice 237 14541 31 5% 11673 15 7% 45.086
ShowHideStatudBar) android systemUI timing (ms) 730 432 41 5% 260 o.7% 47.2%

Illustration 22: Gain in term of method call

© CREENSPECTOR 16

ShowHideStatusBar_Energy

Platform CPU 16.71 %

Platform Discharge 59.36 mAh
Platform Discharge per second 301.96 pAhls
Process CPU 0 %

Process Data 0B

Network Packets 0

Process Memory 132.84 MB

15.51 %
55.55 mAh
273.88 pAh/s
]

0B

0

130.49 MB

Illustration 23: ShowHide Status bar improvement between original version (column 1) and
optimized version (col 2), absolute difference (col 3) and relative difference (col 4) (screenshot from

GREENSPECTOR interface)

The global gain for the test ShowHideStatus bar is the following:

We got a gain of -28 pyAh/s (- 9.3%) !

We also reduced the pressure on the memory management, as shown by the 2 graphs
below. On the original version, the garbage collector runs every 1 minute and 20 seconds.
On the optimized version, it runs every 2 minutes 30. There are less objects to destroy, so

the GC is not called as much as before.

We got a gain of 57@0
-28 yAh/s (- 9.3%) (50
)

150.80 MB

140 MB

130MB

120 MB

110MB

100 MB

90 MB
87.22 MB
0ms

146.71 MB

140 MB

130mB

90 MB

81.18 MB
om 40.00s
maos

1::: ’

Reduction of

The arbage
the memory N g g
Mmanagement collector runs
b every 2mn30
pressure

llustration 24: RAM / initial
version

Ilustration 25: RAM / Op-
—|| B timized version with the
ShowHideStatusBar test

© CREENSPECTOR

4.4, Action 4 - BatteryMeterDrawable optimization

After the action 2, we had reduced and suppressed a lot of calls. The BatteryMeterDrawable
object was still heavy, but there were no more calls on Show/Hide of status bar. This action
was deemed as not relevant for the sort duration of the audit.

45. Action5-0Optimize the redraw (Global redraw and poor caching of lazy
update)

During the audit, we did not have enough time to work on this action. However, decreasing
the triggering of refreshes had made this action less important (although still necessary).

4.6. Action 6 - Analysis of Energy leak bug

We identified two potentials bugs:
- There isa memory leak. Even if we see that the garbage collector does its job, the memory
is continuously increasing from test run to test run. The energy of all tests also continuously

180 increases. We had identified

160 this during the measurement

140 step, and we had adapted our

protocol of measurement not
12 . .

to suffer from that. Let it live,
100 and the idle consumption goes
8 from 85uAh/s to 150uAh/s!

-Whenthestatus barisexpanded
- and the user locks the screen,
. it seems that the listener which

1 2 3 4 5

permits to update the tiles stays
open. This creates unnecessary
treatments and Redraws which
happen even though the screen
is off.

(=]

[==]

Energy (uAh/s)

3

8

Illustration 26: Evolution of reference energy consumption
for original version (showing a leak)

4.7. Action 7 - Improve the code as per code eco-design rules

During the audit, we lacked the necessary time to conduct this action. We agreed with the
Customer team that this one will be done by its development teams. Indeed, the use of
GREENSPECTOR tools (including the Eclipse plug-in and Android Studio plug-in) allows
any developer to easily scan their code and apply the “green” rules.

Note: The scanning had shown that no “high priority” green rules had been infringed.
GCreen rules are interesting with a mid and long term vision. Like maintainability
and other best practices which improve the code quality, it will improve the energy
consumption of software as coding goes along.

© CREENSPECTOR 18

© CREENSPECTOR

5. CONCLUSIONS

51. Performance is not enough.
Watch your efficiency.

Mobile hardware has become more and
more powerful. The smartphone used
during this audit boasted aa many as 8
CPUs and one GPU. Indeed, the application
uses all the available CPUs and there is no
performance problem. This meets Wirth's
Law : “Software is getting slower more
rapidly than hardware becomes faster.”
(https://en.wikipedia.org/wiki/Wirth's_law).

Hardware provides more and more power
and resources to the software, hence the
software use all the resources. The only
limitations for the software are defined
by two factors: the user's perception of
performance (aka speed), and t he available
hardware resources.

Getting back to this audit, we saw that the
performance level of the SystemUI app was
quite good. But this was done at the cost
of using all the available resources without
limitation, leading to an app consuming
way more battery than it could, or should.
We showed that the same performance
level may be achieved with a lower
consumption of energy, thus granting the
user a longer battery life.

One of our usual proposals in order to
reduce the consumption of resources is
to limit it with a budget. Therefore we
introduce a third limitation factor, which
will permit to better control the behavior of
the software. This conceptis already applied
in the performance domain with the RAIL
model. But the current performance
models need to be improved. For example,
there is this reflexion on the RAIL model
proposed by Paul lIrish and Paul Lewis:
Add B (for battery) and an M (for memory),
turning into BLAIMR, PRIMAL. Just as we
have a performance budget, we need an
energy consumption budget. Set your own

target, like “this software should not double
the discharge rate of the battery”, or “this
software should not increases by more
than 10% the discharge rate of the battery
when in Idle mode..”, and so on.

Timing or Speed performance is not the
only solution to improve the software
efficiency. This leads to over-consuming
software and to empty batteries.
Performance models need to be improved
and to integrate energy and resources
consumptions.

5.2. Measure, Measure, Measure
Our goal was to reduce the power

consumption of SystemUl, an
Android core application. We have

succeeded inaveryshorttimeframe,
and above all we have shown that it
was possible to go way further.

We managed to do it because we had both:
- A good method: look for the big stones,
proceed by elimination, and above all
MEA-SU-RE. It's by measurement that
knowledge arrives, and by measurement
that progress is evaluated. Once the big
stones are identified, you spend your time
and your expertise much more efficiently.

- A good tool: since you have to measure,
let it be easy to do, and let the findings
be relevant. We have shown that
GREENSPECTOR's API offered a nice
versatility for in-house Android developers,
and that GREENSPECTOR's interface

allowed to easily follow the findings and
progresses.

Still some work to do

The SystemUlappcanstill beimprovedin manyways. Event programming
is overused and has some drawbacks: no clear management of the
impact of event triggering, redraws happening way too often.. The
performance of the Ul is also too high: maintaining a 60 FPS is over-
quality.

We managed to improve the energy consumption by 2 quick actions.
The memory was improved also. But the impact on the system s still
too high. An impact less that 2 times the reference consumption would
be more acceptable (See? This is an energy consumption budget!).
Improvements can be continued in order to reach this goal...

-

Lol

Emergency calls only . 1009 n

3:06 pM
Monday. January 10

°
Want to learn more about software v 3
eCOd eSig n ? WA-Fi Bluetooth w

Do not disturb SiMcard Alrplane mode

www.greenspector.com

my o

+33 (0) 9 51 44 5579 ;). ..
contact@greenspector.com)”°'.° GREENSPECTUR

© CREENSPECTOR 20

